login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A074107
a(n) = Product of (prime + 1) for first n primes - primorial (n); Sum of proper divisors of the n-th primorial.
3
0, 1, 6, 42, 366, 4602, 66738, 1231314, 25136790, 612982650, 18612572370, 602072009070, 23079296834790, 976751205195990, 43281303292150770, 2090585319354906990, 113506497027753468870, 6842978980142398176930, 426187457118982899608730, 29098035465450244144376910, 2102916875063497845451016610, 156173789584825539524342644530
OFFSET
0,3
LINKS
FORMULA
From Antti Karttunen, Nov 19 2024: (Start)
a(n) = A348507(A002110(n)) = A054640(n) - A002110(n) = A001065(A002110(n)).
a(n) >= A024451(n), because A348507(n) >= A003415(n).
For n >= 1, a(n) <= A070826(1+n) [= A002110(1+n)/2] < A051674(n).
(End)
EXAMPLE
a(3) = (2+1)*(3+1)*(5+1) - 2*3*5 = 72 - 30 = 42.
MAPLE
for n from 1 to 25 do a[n] := product(ithprime(i)+1, i=1..n)-product(ithprime(i), i=1..n): od:seq(a[j], j=1..25);
MATHEMATICA
Module[{nn=20, p, pr, pr1}, p=Prime[Range[nn]]; pr=FoldList[Times, 1, p]; pr1= FoldList[Times, 1, p+1]; #[[2]]-#[[1]]&/@Rest[Thread[{pr, pr1}]]](* Harvey P. Dale, Feb 07 2015 *)
PROG
(PARI) A074107(n) = (prod(i=1, n, 1+prime(i))-prod(i=1, n, prime(i))); \\ Antti Karttunen, Nov 19 2024
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Aug 22 2002
EXTENSIONS
More terms from Sascha Kurz, Feb 01 2003
Term a(0)=0 prepended, data section further extended, and secondary definition added by Antti Karttunen, Nov 19 2024
STATUS
approved