OFFSET
0,3
REFERENCES
J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 695, pp. 90, 297-298, Ellipses, Paris, 2004.
J. Sandor and B. Crstici, Handbook of Number Theory II, Springer, 2004, p. 265, eq. 10.
LINKS
Enrique Pérez Herrero, Table of n, a(n) for n = 0..200
FORMULA
For n >= 2, a(n) = n! * Product_{j=2..n} Product_{p|j} (1-p) (where the second product is over all primes p that divide j) (cf. A023900). - Avi Peretz (njk(AT)netvision.net.il), Mar 22 2001
a(n) = n! * Product_{p<=n} (1-p)^floor(n/p) where the product runs through the primes. - Benoit Cloitre, Jan 31 2008
a(n) = Product_{k=1..n} (-1)^A001221(k) * A000010(k) * A007947(k) [De Koninck & Mercier]. - Bernard Schott, Dec 11 2020
MAPLE
A060238:=n->n!*mul((1-ithprime(i))^floor(n/ithprime(i)), i=1..numtheory[pi](n)): seq(A060238(n), n=0..20); # Wesley Ivan Hurt, Aug 15 2016
MATHEMATICA
A060238[n_]:=n!*Product[(1 - Prime[i])^Floor[n/Prime[i]], {i, PrimePi[n]}]; Array[A060238, 20] (* Enrique Pérez Herrero, Jun 08 2010 *)
PROG
(PARI) a(n)=n!*prod(p=1, sqrtint(n), if(isprime(p), (1-p)^floor(n/p), 1)) \\ Benoit Cloitre, Jan 31 2008
CROSSREFS
KEYWORD
sign
AUTHOR
MCKAY john (mckay(AT)cs.concordia.ca), Mar 21 2001
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Jan 25 2023
STATUS
approved