login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060238
a(n) = det(M) where M is an n X n matrix with M[i,j] = lcm(i,j).
7
1, 1, -2, 12, -48, 960, 11520, -483840, 3870720, -69672960, -2786918400, 306561024000, 7357464576000, -1147764473856000, -96412215803904000, -11569465896468480000, 185111454343495680000, -50350315581430824960000, -1812611360931509698560000
OFFSET
0,3
REFERENCES
J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 695, pp. 90, 297-298, Ellipses, Paris, 2004.
J. Sandor and B. Crstici, Handbook of Number Theory II, Springer, 2004, p. 265, eq. 10.
FORMULA
For n >= 2, a(n) = n! * Product_{j=2..n} Product_{p|j} (1-p) (where the second product is over all primes p that divide j) (cf. A023900). - Avi Peretz (njk(AT)netvision.net.il), Mar 22 2001
a(n) = n! * Product_{p<=n} (1-p)^floor(n/p) where the product runs through the primes. - Benoit Cloitre, Jan 31 2008
a(n) = A000142(n) * A085542(n). - Enrique Pérez Herrero, Jun 08 2010
a(n) = A001088(n) * A048803(n) * (-1)^A013939(n). - Amiram Eldar, Dec 19 2018
a(n) = Product_{k=1..n} (-1)^A001221(k) * A000010(k) * A007947(k) [De Koninck & Mercier]. - Bernard Schott, Dec 11 2020
MAPLE
A060238:=n->n!*mul((1-ithprime(i))^floor(n/ithprime(i)), i=1..numtheory[pi](n)): seq(A060238(n), n=0..20); # Wesley Ivan Hurt, Aug 15 2016
MATHEMATICA
A060238[n_]:=n!*Product[(1 - Prime[i])^Floor[n/Prime[i]], {i, PrimePi[n]}]; Array[A060238, 20] (* Enrique Pérez Herrero, Jun 08 2010 *)
PROG
(PARI) a(n)=n!*prod(p=1, sqrtint(n), if(isprime(p), (1-p)^floor(n/p), 1)) \\ Benoit Cloitre, Jan 31 2008
KEYWORD
sign
AUTHOR
MCKAY john (mckay(AT)cs.concordia.ca), Mar 21 2001
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Jan 25 2023
STATUS
approved