The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A060237 a(n) = n!^2 * Sum_{m=1..n}( Sum_{k=1..m} 1/(k*m) ). 3
 1, 7, 85, 1660, 48076, 1942416, 104587344, 7245893376, 628308907776, 66687811660800, 8506654697548800, 1284292319599411200, 226530955276874956800, 46165213716463676620800 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS G. C. Greubel, Table of n, a(n) for n = 1..252 FORMULA a(n) = a(n-1) * n^2 + (n-1)! *n! * Sum_{k=1..n} 1/k. From Vladeta Jovovic, Jan 29 2005: (Start) Sum_{n>=0} a(n)*x^n/n!^2 = -dilog(1/(1-x))/(1-x). a(n) = n!^2*Sum_{k=1..n} (-1)^(k+1)*binomial(n, k)/k^2. (End) From Vaclav Kotesovec, Oct 23 2017: (Start) a(n) = (3*n^2 - 3*n + 1)*a(n-1) - 3*(n-1)^4*a(n-2) + (n-2)^3*(n-1)^3*a(n-3). a(n) ~ n!^2 * log(n)^2/2 * (1 + 2*gamma/log(n) + (Pi^2/6 + gamma^2)/log(n)^2), where gamma is the Euler-Mascheroni constant (A001620). (End) EXAMPLE a(2) = 2!^2 *(1/(1*1) + 1/(1*2) + 1/(2*2)) = 7. MATHEMATICA Table[n!^2*Sum[(-1)^(k+1)*Binomial[n, k]/k^2, {k, 1, n}], {n, 1, 30}] (* or *) Table[n!^2*Sum[Sum[1/(k*m), {k, 1, m}], {m, 1, n}], {n, 1, 30}](* G. C. Greubel, Aug 30 2018 *) PROG (PARI) for(n=1, 30, print1(n!^2*sum(k=1, n, (-1)^(k+1)*binomial(n, k)/k^2), ", ")) \\ G. C. Greubel, Aug 30 2018 (MAGMA) [Factorial(n)^2*(&+[(-1)^(k+1)*Binomial(n, k)/k^2: k in [1..n]]): n in [1..30]]; // G. C. Greubel, Aug 30 2018 CROSSREFS Essentially the same as A000424. Sequence in context: A056547 A293055 A121020 * A000424 A207214 A000686 Adjacent sequences:  A060234 A060235 A060236 * A060238 A060239 A060240 KEYWORD easy,nonn AUTHOR Leroy Quet, Mar 21 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 10 11:15 EDT 2021. Contains 342845 sequences. (Running on oeis4.)