login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357539
a(n) = coefficient of x^n/n! in: Sum_{n>=0} ( x*exp(x) )^(n*(n+1)/2).
1
1, 1, 2, 9, 76, 545, 3966, 47257, 807416, 13431105, 201158650, 2992272041, 55015365252, 1383804654817, 39956273419622, 1127353750507545, 29721911064179056, 748976662158153857, 19509333366569811570, 592071561505183956553, 22102320673776378606140
OFFSET
0,3
COMMENTS
Conjecture: Limit_{n->infinity} (a(n)/n!)^(1/n) = 1/LambertW(1). - Vaclav Kotesovec, Dec 06 2022
FORMULA
E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/n! may be defined by the following expressions.
(1) A(x) = Sum_{n>=0} x^(n*(n+1)/2) * exp(n*(n+1)/2 * x).
(2) A(x) = Product_{n>=1} (1 + x^n*exp(n*x)) * (1 - x^(2*n)*exp(2*n*x)), by the Jacobi triple product identity.
EXAMPLE
E.g.f.: A(x) = 1 + x + 2*x^2/2! + 9*x^3/3! + 76*x^4/4! + 545*x^5/5! + 3966*x^6/6! + 47257*x^7/7! + 807416*x^8/8! + 13431105*x^9/9! + 201158650*x^10/10! + ...
where
A(x) = 1 + (x*exp(x)) + (x*exp(x))^3 + (x*exp(x))^6 + (x*exp(x))^10 + (x*exp(x))^15 + (x*exp(x))^21 + ... + (x*exp(x))^(n*(n+1)/2) + ...
The e.g.f. also equals the infinite product:
A(x) = (1 + x*exp(x))*(1 - x^2*exp(2*x)) * (1 + x^2*exp(2*x))*(1 - x^4*exp(4*x)) * (1 + x^3*exp(3*x))*(1 - x^6*exp(6*x)) * (1 + x^4*exp(4*x))*(1 - x^8*exp(8*x)) * ... * (1 + x^n*exp(n*x))*(1 - x^(2*n)*exp(2*n*x)) * ...
MATHEMATICA
nmax = 20; CoefficientList[Series[Sum[(x*E^x)^(k*(k + 1)/2), {k, 0, Sqrt[2*nmax]}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Dec 06 2022 *)
PROG
(PARI) {a(n) = my(A=1);
A = sum(m=0, sqrtint(2*n+9), (x * exp(x +x*O(x^n)))^(m*(m+1)/2) ); n! * polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A370259 A335378 A232471 * A277181 A105785 A245406
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 05 2022
STATUS
approved