login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = coefficient of x^n/n! in: Sum_{n>=0} ( x*exp(x) )^(n*(n+1)/2).
1

%I #21 Dec 06 2022 07:14:17

%S 1,1,2,9,76,545,3966,47257,807416,13431105,201158650,2992272041,

%T 55015365252,1383804654817,39956273419622,1127353750507545,

%U 29721911064179056,748976662158153857,19509333366569811570,592071561505183956553,22102320673776378606140

%N a(n) = coefficient of x^n/n! in: Sum_{n>=0} ( x*exp(x) )^(n*(n+1)/2).

%C Conjecture: Limit_{n->infinity} (a(n)/n!)^(1/n) = 1/LambertW(1). - _Vaclav Kotesovec_, Dec 06 2022

%H Paul D. Hanna, <a href="/A357539/b357539.txt">Table of n, a(n) for n = 0..500</a>

%H Vaclav Kotesovec, <a href="/A357539/a357539_1.jpg">Plot of a(n+1)/a(n)/n for n = 1..10000</a>

%H Vaclav Kotesovec, <a href="/A357539/a357539_2.jpg">Plot of a(n) / (n^n/(exp(n)*LambertW(1)^n)) for n = 1..10000</a>

%F E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/n! may be defined by the following expressions.

%F (1) A(x) = Sum_{n>=0} x^(n*(n+1)/2) * exp(n*(n+1)/2 * x).

%F (2) A(x) = Product_{n>=1} (1 + x^n*exp(n*x)) * (1 - x^(2*n)*exp(2*n*x)), by the Jacobi triple product identity.

%e E.g.f.: A(x) = 1 + x + 2*x^2/2! + 9*x^3/3! + 76*x^4/4! + 545*x^5/5! + 3966*x^6/6! + 47257*x^7/7! + 807416*x^8/8! + 13431105*x^9/9! + 201158650*x^10/10! + ...

%e where

%e A(x) = 1 + (x*exp(x)) + (x*exp(x))^3 + (x*exp(x))^6 + (x*exp(x))^10 + (x*exp(x))^15 + (x*exp(x))^21 + ... + (x*exp(x))^(n*(n+1)/2) + ...

%e The e.g.f. also equals the infinite product:

%e A(x) = (1 + x*exp(x))*(1 - x^2*exp(2*x)) * (1 + x^2*exp(2*x))*(1 - x^4*exp(4*x)) * (1 + x^3*exp(3*x))*(1 - x^6*exp(6*x)) * (1 + x^4*exp(4*x))*(1 - x^8*exp(8*x)) * ... * (1 + x^n*exp(n*x))*(1 - x^(2*n)*exp(2*n*x)) * ...

%t nmax = 20; CoefficientList[Series[Sum[(x*E^x)^(k*(k + 1)/2), {k, 0, Sqrt[2*nmax]}], {x, 0, nmax}], x] * Range[0, nmax]! (* _Vaclav Kotesovec_, Dec 06 2022 *)

%o (PARI) {a(n) = my(A=1);

%o A = sum(m=0,sqrtint(2*n+9), (x * exp(x +x*O(x^n)))^(m*(m+1)/2) ); n! * polcoeff(A,n)}

%o for(n=0,30,print1(a(n),", "))

%K nonn

%O 0,3

%A _Paul D. Hanna_, Dec 05 2022