login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245406
Number of endofunctions on [n] such that no element has a preimage of cardinality two.
3
1, 1, 2, 9, 76, 825, 10206, 143521, 2313200, 42482313, 875799550, 19972186311, 498430219464, 13509979971241, 395352049852046, 12425644029361725, 417456939168255616, 14929305882415781265, 566234625018001351230, 22701936510037394021395, 959341639105178919209000
OFFSET
0,3
LINKS
Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..396 (first 200 terms from Alois P. Heinz)
FORMULA
a(n) = n! * [x^n] (exp(x)-x^2/2!)^n.
a(n) ~ c * d^n * n^n / exp(n), where d = 2.166383277092734585444028653747119..., c = 0.8627963719760750933657356839596... . - Vaclav Kotesovec, Jul 24 2014
MAPLE
b:= proc(n, i) option remember; `if`(n=0 and i=0, 1, `if`(i<1, 0,
add(`if`(j=2, 0, b(n-j, i-1) *binomial(n, j)), j=0..n)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..25);
MATHEMATICA
Table[n!*SeriesCoefficient[(E^x - x^2/2)^n, {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jul 23 2014 *)
With[{k=2}, Flatten[{1, Table[Sum[Binomial[n, j]*Binomial[n, k*j]*(-1)^j*(n-j)^(n-k*j)*(k*j)!/(k!)^j, {j, 0, n/k}], {n, 1, 20}]}]] (* Vaclav Kotesovec, Jul 24 2014 *)
CROSSREFS
Column k=2 of A245405.
Cf. A245493.
Sequence in context: A357539 A277181 A105785 * A337558 A276742 A123680
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 21 2014
STATUS
approved