login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357542
Coefficients T(n,k) of x^(3*n)*r^(3*k)/(3*n)! in power series D(x,r) = 1 + r^3 * Integral S(x,r)^2 * D(x,r)^2 dx such that C(x,r)^3 - S(x,r)^3 = 1 and D(x,r)^3 - r^3*S(x,r)^3 = 1, as a triangle read by rows.
5
1, 0, 2, 0, 120, 40, 0, 21600, 37440, 3680, 0, 8553600, 38966400, 20592000, 880000, 0, 6329664000, 57708288000, 79491456000, 19269888000, 435776000, 0, 7852204800000, 123646051584000, 335872728576000, 213892766208000, 28748332800000, 386949376000, 0, 15132769090560000, 374841224017920000, 1730103155573760000, 2169194182594560000, 774705298498560000, 64544356546560000, 560034421760000
OFFSET
0,3
COMMENTS
Related to Dixon elliptic function cm(x,0) (cf. A104134).
Equals a row reversal of triangle A357541 which describes the related function C(x,r).
LINKS
FORMULA
Generating function D(x,r) = Sum_{n>=0} Sum_{k=0..n} T(n,k) * x^(3*n) * r^(3*k) / (3*n)! and related functions S(x,r) and C(x,r) satisfy the following relations.
For brevity, some formulas here will use S = S(x,r), C = C(x,r), and D = D(x,r).
(1.a) C(x,r)^3 - S(x,r)^3 = 1.
(1.b) D(x,r)^3 - r^3 * S(x,r)^3 = 1.
(1.c) D(x,r)^3 - r^3 * C(x,r)^3 = 1 - r^3.
Integral formulas.
(2.a) S(x,r) = Integral C(x,r)^2 * D(x,r)^2 dx.
(2.b) C(x,r) = 1 + Integral S(x,r)^2 * D(x,r)^2 dx.
(2.c) D(x,r) = 1 + r^3 * Integral S(x,r)^2 * C(x,r)^2 dx.
(2.d) D(x,r)^3 = 1 + r^3 * Integral 3 * S(x,r)^2 * C(x,r)^2 * D(x,r)^2 dx.
Derivatives.
(3.a) d/dx S(x,r) = C(x,r)^2 * D(x,r)^2.
(3.b) d/dx C(x,r) = S(x,r)^2 * D(x,r)^2.
(3.c) d/dx D(x,r) = r^3 * S(x,r)^2 * C(x,r)^2.
Exponential formulas.
(4.a) C - S = exp( -Integral (C + S) * D^2 dx ).
(4.b) D - r*S = exp( -r * Integral (D + r*S) * C^2 dx ).
(4.c) C + S = sqrt(C^2 - S^2) * exp( Integral D^2/(C^2 - S^2) dx ).
(4.d) D + r*S = sqrt(D^2 - r^2*S^2) * exp( r * Integral C^2/(D^2 - r^2*S^2) dx ).
(5.a) C^2 - S^2 = exp( -2 * Integral S*C/(C + S) * D^2 dx ).
(5.b) D^2 - r^2*S^2 = exp( -2*r^2 * Integral S*D/(D + r*S) * C^2 dx ).
(5.c) C^2 + S^2 = exp( 2 * Integral S*C*(C + S)/(C^2 + S^2) * D^2 dx ).
(5.d) D^2 + r^2*S^2 = exp( 2*r^2 * Integral S*D*(D + r*S)/(D^2 + r^2*S^2) * C^2 dx ).
Hyperbolic functions.
(6.a) C = sqrt(C^2 - S^2) * cosh( Integral D^2/(C^2 - S^2) dx ).
(6.b) S = sqrt(C^2 - S^2) * sinh( Integral D^2/(C^2 - S^2) dx ).
(6.c) D = sqrt(D^2 - r^2*S^2) * cosh( r * Integral C^2/(D^2 - r^2*S^2) dx ).
(6.d) r*S = sqrt(D^2 - r^2*S^2) * sinh( r * Integral C^2/(D^2 - r^2*S^2) dx ).
Other formulas.
(7) S(x,r) = Series_Reversion( Integral ( (1 + x^3)^2 * (1 + r^3*x^3)^2 )^(-1/3) dx ).
(8.a) T(n,n) = (-1)^n * A104134(n).
(8.b) Sum_{k=0..n} T(n,k) = (3*n)!/(3^n*n!) * Product_{k=1..n} (3*k - 2) = A178575(n), for n >= 0.
EXAMPLE
E.g.f.: D(x,r) = Sum_{n>=0} Sum_{k=0..n} T(n,k) * x^(3*n) * r^(3*k) / (3*n)! begins:
D(x,r) = 1 + r^3 * Integral S(x,r)^2 * C(x,r)^2 dx = 1 + 2*r^3*x^3/3! + (120*r^3 + 40*r^6)*x^6/6! + (21600*r^3 + 37440*r^6 + 3680*r^9)*x^9/9! + (8553600*r^3 + 38966400*r^6 + 20592000*r^9 + 880000*r^12)*x^12/12! + (6329664000*r^3 + 57708288000*r^6 + 79491456000*r^9 + 19269888000*r^12 + 435776000*r^15)*x^15/15! + (7852204800000*r^3 + 123646051584000*r^6 + 335872728576000*r^9 + 213892766208000*r^12 + 28748332800000*r^15 + 386949376000*r^18)*x^18/18! + (15132769090560000*r^3 + 374841224017920000*r^6 + 1730103155573760000*r^9 + 2169194182594560000*r^12 + 774705298498560000*r^15 + 64544356546560000*r^18 + 560034421760000*r^21)*x^21/21! + ...
This table of coefficients T(n,k) of x^(3*n) * r^(3*k) / (3*n)! in C(x,r) for n >= 0, k = 0..n, begins:
n = 0: [1];
n = 1: [0, 2];
n = 2: [0, 120, 40];
n = 3: [0, 21600, 37440, 3680];
n = 4: [0, 8553600, 38966400, 20592000, 880000];
n = 5: [0, 6329664000, 57708288000, 79491456000, 19269888000, 435776000];
n = 6: [0, 7852204800000, 123646051584000, 335872728576000, 213892766208000, 28748332800000, 386949376000];
n = 7: [0, 15132769090560000, 374841224017920000, 1730103155573760000, 2169194182594560000, 774705298498560000, 64544356546560000, 560034421760000];
n = 8: [0, 42815371615948800000, 1563368171330211840000, 11169319418477383680000, 23676862831649280000000, 16693947940315852800000, 3741268129758720000000, 208114576947425280000, 1233482823823360000];
...
in which the main diagonal gives the unsigned coefficients in the Dixon elliptic function cm(x,0) (cf. A104134).
RELATED SERIES.
S(x,r) = Integral C(x,r)^2 * D(x,r)^2 dx = x + (4 + 4*r^3)*x^4/4! + (160 + 800*r^3 + 160*r^6)*x^7/7! + (20800 + 292800*r^3 + 292800*r^6 + 20800*r^9)*x^10/10! + (6476800 + 191910400*r^3 + 500121600*r^6 + 191910400*r^9 + 6476800*r^12)*x^13/13! + (3946624000 + 210590336000*r^3 + 1091343616000*r^6 + 1091343616000*r^9 + 210590336000*r^12 + 3946624000*r^15)*x^16/16! + (4161608704000 + 361556726784000*r^3 + 3216369361920000*r^6 + 6333406238720000*r^9 + 3216369361920000*r^12 + 361556726784000*r^15 + 4161608704000*r^18)*x^19/19! + (6974121256960000 + 919365914368000000*r^3 + 12789764316088320000*r^6 + 42703786876467200000*r^9 + 42703786876467200000*r^12 + 12789764316088320000*r^15 + 919365914368000000*r^18 + 6974121256960000*r^21)*x^22/22! + ...
where D(x,r)^3 - r^3 * S(x,r)^3 = 1.
C(x,r) = 1 + Integral S(x,r)^2 * D(x,r)^2 dx = 1 + 2*x^3/3! + (40 + 120*r^3)*x^6/6! + (3680 + 37440*r^3 + 21600*r^6)*x^9/9! + (880000 + 20592000*r^3 + 38966400*r^6 + 8553600*r^9)*x^12/12! + (435776000 + 19269888000*r^3 + 79491456000*r^6 + 57708288000*r^9 + 6329664000*r^12)*x^15/15! + (386949376000 + 28748332800000*r^3 + 213892766208000*r^6 + 335872728576000*r^9 + 123646051584000*r^12 + 7852204800000*r^15)*x^18/18! + (560034421760000 + 64544356546560000*r^3 + 774705298498560000*r^6 + 2169194182594560000*r^9 + 1730103155573760000*r^12 + 374841224017920000*r^15 + 15132769090560000*r^18)*x^21/21! + ...
where D(x,r)^3 - r^3 * C(x,r)^3 = (1 - r^3).
PROG
(PARI) {T(n, k) = my(S=x, C=1, D=1); for(i=0, n,
S = intformal( C^2*D^2 +O(x^(3*n+3)));
C = 1 + intformal( S^2*D^2);
D = 1 + r^3*intformal( S^2*C^2); );
(3*n)!*polcoeff( polcoeff(D, 3*n, x), 3*k, r)}
for(n=0, 10, for(k=0, n, print1( T(n, k), ", ")); print(""))
(PARI) /* Using Series Reversion for S(x, r) (faster) */
{T(n, k) = my(S = serreverse( intformal( 1/((1 + x^3)^2*(1 + r^3*x^3)^2 +O(x^(3*n+3)) )^(1/3) )) );
(3*n)!*polcoeff( polcoeff((1 + r^3*S^3)^(1/3), 3*n, x), 3*k, r)}
for(n=0, 10, for(k=0, n, print1( T(n, k), ", ")); print(""))
CROSSREFS
Cf. A104134 (cm(x,0)), A357540 (S(x,r)), A357541 (C(x,r)), A178575 (row sums), A357545 (central terms).
Cf. A357802.
Sequence in context: A033838 A181373 A046065 * A374275 A339185 A003321
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Oct 09 2022
STATUS
approved