The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A357542 Coefficients T(n,k) of x^(3*n)*r^(3*k)/(3*n)! in power series D(x,r) = 1 + r^3 * Integral S(x,r)^2 * D(x,r)^2 dx such that C(x,r)^3 - S(x,r)^3 = 1 and D(x,r)^3 - r^3*S(x,r)^3 = 1, as a triangle read by rows. 5
 1, 0, 2, 0, 120, 40, 0, 21600, 37440, 3680, 0, 8553600, 38966400, 20592000, 880000, 0, 6329664000, 57708288000, 79491456000, 19269888000, 435776000, 0, 7852204800000, 123646051584000, 335872728576000, 213892766208000, 28748332800000, 386949376000, 0, 15132769090560000, 374841224017920000, 1730103155573760000, 2169194182594560000, 774705298498560000, 64544356546560000, 560034421760000 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Related to Dixon elliptic function cm(x,0) (cf. A104134). Equals a row reversal of triangle A357541 which describes the related function C(x,r). LINKS Paul D. Hanna, Table of n, a(n) for n = 0..2555 FORMULA Generating function D(x,r) = Sum_{n>=0} Sum_{k=0..n} T(n,k) * x^(3*n) * r^(3*k) / (3*n)! and related functions S(x,r) and C(x,r) satisfy the following relations. For brevity, some formulas here will use S = S(x,r), C = C(x,r), and D = D(x,r). (1.a) C(x,r)^3 - S(x,r)^3 = 1. (1.b) D(x,r)^3 - r^3 * S(x,r)^3 = 1. (1.c) D(x,r)^3 - r^3 * C(x,r)^3 = 1 - r^3. Integral formulas. (2.a) S(x,r) = Integral C(x,r)^2 * D(x,r)^2 dx. (2.b) C(x,r) = 1 + Integral S(x,r)^2 * D(x,r)^2 dx. (2.c) D(x,r) = 1 + r^3 * Integral S(x,r)^2 * C(x,r)^2 dx. (2.d) D(x,r)^3 = 1 + r^3 * Integral 3 * S(x,r)^2 * C(x,r)^2 * D(x,r)^2 dx. Derivatives. (3.a) d/dx S(x,r) = C(x,r)^2 * D(x,r)^2. (3.b) d/dx C(x,r) = S(x,r)^2 * D(x,r)^2. (3.c) d/dx D(x,r) = r^3 * S(x,r)^2 * C(x,r)^2. Exponential formulas. (4.a) C - S = exp( -Integral (C + S) * D^2 dx ). (4.b) D - r*S = exp( -r * Integral (D + r*S) * C^2 dx ). (4.c) C + S = sqrt(C^2 - S^2) * exp( Integral D^2/(C^2 - S^2) dx ). (4.d) D + r*S = sqrt(D^2 - r^2*S^2) * exp( r * Integral C^2/(D^2 - r^2*S^2) dx ). (5.a) C^2 - S^2 = exp( -2 * Integral S*C/(C + S) * D^2 dx ). (5.b) D^2 - r^2*S^2 = exp( -2*r^2 * Integral S*D/(D + r*S) * C^2 dx ). (5.c) C^2 + S^2 = exp( 2 * Integral S*C*(C + S)/(C^2 + S^2) * D^2 dx ). (5.d) D^2 + r^2*S^2 = exp( 2*r^2 * Integral S*D*(D + r*S)/(D^2 + r^2*S^2) * C^2 dx ). Hyperbolic functions. (6.a) C = sqrt(C^2 - S^2) * cosh( Integral D^2/(C^2 - S^2) dx ). (6.b) S = sqrt(C^2 - S^2) * sinh( Integral D^2/(C^2 - S^2) dx ). (6.c) D = sqrt(D^2 - r^2*S^2) * cosh( r * Integral C^2/(D^2 - r^2*S^2) dx ). (6.d) r*S = sqrt(D^2 - r^2*S^2) * sinh( r * Integral C^2/(D^2 - r^2*S^2) dx ). Other formulas. (7) S(x,r) = Series_Reversion( Integral ( (1 + x^3)^2 * (1 + r^3*x^3)^2 )^(-1/3) dx ). (8.a) T(n,n) = (-1)^n * A104134(n). (8.b) Sum_{k=0..n} T(n,k) = (3*n)!/(3^n*n!) * Product_{k=1..n} (3*k - 2) = A178575(n), for n >= 0. EXAMPLE E.g.f.: D(x,r) = Sum_{n>=0} Sum_{k=0..n} T(n,k) * x^(3*n) * r^(3*k) / (3*n)! begins: D(x,r) = 1 + r^3 * Integral S(x,r)^2 * C(x,r)^2 dx = 1 + 2*r^3*x^3/3! + (120*r^3 + 40*r^6)*x^6/6! + (21600*r^3 + 37440*r^6 + 3680*r^9)*x^9/9! + (8553600*r^3 + 38966400*r^6 + 20592000*r^9 + 880000*r^12)*x^12/12! + (6329664000*r^3 + 57708288000*r^6 + 79491456000*r^9 + 19269888000*r^12 + 435776000*r^15)*x^15/15! + (7852204800000*r^3 + 123646051584000*r^6 + 335872728576000*r^9 + 213892766208000*r^12 + 28748332800000*r^15 + 386949376000*r^18)*x^18/18! + (15132769090560000*r^3 + 374841224017920000*r^6 + 1730103155573760000*r^9 + 2169194182594560000*r^12 + 774705298498560000*r^15 + 64544356546560000*r^18 + 560034421760000*r^21)*x^21/21! + ... This table of coefficients T(n,k) of x^(3*n) * r^(3*k) / (3*n)! in C(x,r) for n >= 0, k = 0..n, begins: n = 0: [1]; n = 1: [0, 2]; n = 2: [0, 120, 40]; n = 3: [0, 21600, 37440, 3680]; n = 4: [0, 8553600, 38966400, 20592000, 880000]; n = 5: [0, 6329664000, 57708288000, 79491456000, 19269888000, 435776000]; n = 6: [0, 7852204800000, 123646051584000, 335872728576000, 213892766208000, 28748332800000, 386949376000]; n = 7: [0, 15132769090560000, 374841224017920000, 1730103155573760000, 2169194182594560000, 774705298498560000, 64544356546560000, 560034421760000]; n = 8: [0, 42815371615948800000, 1563368171330211840000, 11169319418477383680000, 23676862831649280000000, 16693947940315852800000, 3741268129758720000000, 208114576947425280000, 1233482823823360000]; ... in which the main diagonal gives the unsigned coefficients in the Dixon elliptic function cm(x,0) (cf. A104134). RELATED SERIES. S(x,r) = Integral C(x,r)^2 * D(x,r)^2 dx = x + (4 + 4*r^3)*x^4/4! + (160 + 800*r^3 + 160*r^6)*x^7/7! + (20800 + 292800*r^3 + 292800*r^6 + 20800*r^9)*x^10/10! + (6476800 + 191910400*r^3 + 500121600*r^6 + 191910400*r^9 + 6476800*r^12)*x^13/13! + (3946624000 + 210590336000*r^3 + 1091343616000*r^6 + 1091343616000*r^9 + 210590336000*r^12 + 3946624000*r^15)*x^16/16! + (4161608704000 + 361556726784000*r^3 + 3216369361920000*r^6 + 6333406238720000*r^9 + 3216369361920000*r^12 + 361556726784000*r^15 + 4161608704000*r^18)*x^19/19! + (6974121256960000 + 919365914368000000*r^3 + 12789764316088320000*r^6 + 42703786876467200000*r^9 + 42703786876467200000*r^12 + 12789764316088320000*r^15 + 919365914368000000*r^18 + 6974121256960000*r^21)*x^22/22! + ... where D(x,r)^3 - r^3 * S(x,r)^3 = 1. C(x,r) = 1 + Integral S(x,r)^2 * D(x,r)^2 dx = 1 + 2*x^3/3! + (40 + 120*r^3)*x^6/6! + (3680 + 37440*r^3 + 21600*r^6)*x^9/9! + (880000 + 20592000*r^3 + 38966400*r^6 + 8553600*r^9)*x^12/12! + (435776000 + 19269888000*r^3 + 79491456000*r^6 + 57708288000*r^9 + 6329664000*r^12)*x^15/15! + (386949376000 + 28748332800000*r^3 + 213892766208000*r^6 + 335872728576000*r^9 + 123646051584000*r^12 + 7852204800000*r^15)*x^18/18! + (560034421760000 + 64544356546560000*r^3 + 774705298498560000*r^6 + 2169194182594560000*r^9 + 1730103155573760000*r^12 + 374841224017920000*r^15 + 15132769090560000*r^18)*x^21/21! + ... where D(x,r)^3 - r^3 * C(x,r)^3 = (1 - r^3). PROG (PARI) {T(n, k) = my(S=x, C=1, D=1); for(i=0, n, S = intformal( C^2*D^2 +O(x^(3*n+3))); C = 1 + intformal( S^2*D^2); D = 1 + r^3*intformal( S^2*C^2); ); (3*n)!*polcoeff( polcoeff(D, 3*n, x), 3*k, r)} for(n=0, 10, for(k=0, n, print1( T(n, k), ", ")); print("")) (PARI) /* Using Series Reversion for S(x, r) (faster) */ {T(n, k) = my(S = serreverse( intformal( 1/((1 + x^3)^2*(1 + r^3*x^3)^2 +O(x^(3*n+3)) )^(1/3) )) ); (3*n)!*polcoeff( polcoeff((1 + r^3*S^3)^(1/3), 3*n, x), 3*k, r)} for(n=0, 10, for(k=0, n, print1( T(n, k), ", ")); print("")) CROSSREFS Cf. A104134 (cm(x,0)), A357540 (S(x,r)), A357541 (C(x,r)), A178575 (row sums), A357545 (central terms). Cf. A357802. Sequence in context: A033838 A181373 A046065 * A374275 A339185 A003321 Adjacent sequences: A357539 A357540 A357541 * A357543 A357544 A357545 KEYWORD nonn,tabl AUTHOR Paul D. Hanna, Oct 09 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 9 20:51 EDT 2024. Contains 375044 sequences. (Running on oeis4.)