login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357802
Coefficients T(n,k) of x^(4*n)*r^(4*k)/(4*n)! in power series D(x,r) = 1 + r^4 * Integral S(x,r)^3 * C(x,r)^3 dx such that C(x,r)^4 - S(x,r)^4 = 1 and D(x,r)^4 - r^4*S(x,r)^4 = 1, as a triangle read by rows.
5
1, 0, 6, 0, 6048, 2268, 0, 35126784, 56282688, 7434504, 0, 679185948672, 2514356038656, 1409371197696, 95227613712, 0, 33022883487154176, 220415417637617664, 284770675495950336, 81696140755536384, 3354162536029536, 0, 3393656235362623684608, 35701050229143616880640, 83079959422282198548480, 54913653475645427527680, 9583398717725834749440, 264444869673131894208
OFFSET
0,3
COMMENTS
Equals a row reversal of triangle A357801.
LINKS
FORMULA
Generating function D(x,r) = Sum_{n>=0} Sum_{k=0..n} T(n,k) * x^(4*n) * r^(4*k) / (4*n)! and related functions S(x,r) and C(x,r) satisfy the following formulas.
For brevity, some formulas here will use S = S(x,r), C = C(x,r), and D = D(x,r).
(1.a) C(x,r)^4 - S(x,r)^4 = 1.
(1.b) D(x,r)^4 - r^4 * S(x,r)^4 = 1.
(1.c) D(x,r)^4 - r^4 * C(x,r)^4 = 1 - r^4.
Integral formulas.
(2.a) S(x,r) = Integral C(x,r)^3 * D(x,r)^3 dx.
(2.b) C(x,r) = 1 + Integral S(x,r)^3 * D(x,r)^3 dx.
(2.c) D(x,r) = 1 + r^4 * Integral S(x,r)^3 * C(x,r)^3 dx.
(2.d) D(x,r)^4 = 1 + r^4 * Integral 4 * S(x,r)^3 * C(x,r)^3 * D(x,r)^3 dx.
Derivatives.
(3.a) d/dx S(x,r) = C(x,r)^3 * D(x,r)^3.
(3.b) d/dx C(x,r) = S(x,r)^3 * D(x,r)^3.
(3.c) d/dx D(x,r) = r^4 * S(x,r)^3 * C(x,r)^3.
Exponential formulas.
(4.a) C + S = exp( Integral (C^2 - C*S + S^2) * D^3 dx ).
(4.b) D + r*S = exp( r * Integral (D^2 - r*D*S + r^2*S^2) * C^3 dx ).
(4.c) C - S = exp( -Integral (C^2 + C*S + S^2) * D^3 dx ).
(4.d) D - r*S = exp( -r * Integral (D^2 + r*D*S + r^2*S^2) * C^3 dx ).
(5.a) C^2 + S^2 = exp( 2 * Integral S*C * D^3 dx ).
(5.b) D^2 + r^2*S^2 = exp( 2*r^2 * Integral S*D * C^3 dx ).
(5.c) C^2 - S^2 = exp( -2 * Integral S*C * D^3 dx ).
(5.d) D^2 - r^2*S^2 = exp( -2*r^2 * Integral S*D * C^3 dx ).
Hyperbolic functions.
(6.a) C = sqrt(C^2 - S^2) * cosh( Integral (C^2 + S^2) * D^3 dx ).
(6.b) S = sqrt(C^2 - S^2) * sinh( Integral (C^2 + S^2) * D^3 dx ).
(6.c) D = sqrt(D^2 - r^2*S^2) * cosh( r * Integral (D^2 + r^2*S^2) * C^3 dx ).
(6.d) r*S = sqrt(D^2 - r^2*S^2) * sinh( r * Integral (D^2 + r^2*S^2) * C^3 dx ).
(7.a) C^2 = cosh( 2 * Integral S*C * D^3 dx ).
(7.b) S^2 = sinh( 2 * Integral S*C * D^3 dx ).
(7.c) D^2 = cosh( 2*r^2 * Integral S*D * C^3 dx ).
(7.d) r^2*S^2 = sinh( 2*r^2 * Integral S*D * C^3 dx ).
Other formulas.
(8) S(x,r) = Series_Reversion( Integral 1/((1 + x^4)*(1 + r^4*x^4))^(3/4) dx ).
(9.a) T(n,0) = T(n,n) = A153301(n).
(9.b) Sum_{k=0..n} T(n,k) = A357805(n), for n >= 0.
From Paul D. Hanna, Apr 12 2023 (Start):
Let F(x,r) = Integral 1/((1 + x^4)*(1 + r^4*x^4))^(3/4) dx, then
(10.a) S( F(x,r), r) = x,
(10.b) C( F(x,r), r) = (1 + x^4)^(1/4),
(10.c) D( F(x,r), r) = (1 + r^4*x^4)^(1/4). (End)
EXAMPLE
E.g.f.: D(x,r) = Sum_{n>=0} T(n,k) * x^(4*n) * r^(4*k) / (4*n)! begins:
D(x,r) = 1 + 6*r^4*x^4/4! + (6048*r^4 + 2268*r^8)*x^8/8! + (35126784*r^4 + 56282688*r^8 + 7434504*r^12)*x^12/12! + (679185948672*r^4 + 2514356038656*r^8 + 1409371197696*r^12 + 95227613712*r^16)*x^16/16! + (33022883487154176*r^4 + 220415417637617664*r^8 + 284770675495950336*r^12 + 81696140755536384*r^16 + 3354162536029536*r^20)*x^20/20! + (3393656235362623684608*r^4 + 35701050229143616880640*r^8 + 83079959422282198548480*r^12 + 54913653475645427527680*r^16 + 9583398717725834749440*r^20 + 264444869673131894208*r^24)*x^24/24! +
where D(x,r) = 1 + r^4 * Integral S(x,r)^3 * D(x,r)^3 dx.
TRIANGLE.
This triangle of coefficients T(n,k) of x^(4*n) * r^(4*k) / (4*n)! in D(x,r) for n >= 0, k = 0..n, begins:
n = 0: [1];
n = 1: [0, 6];
n = 2: [0, 6048, 2268];
n = 3: [0, 35126784, 56282688, 7434504];
n = 4: [0, 679185948672, 2514356038656, 1409371197696, 95227613712];
n = 5: [0, 33022883487154176, 220415417637617664, 284770675495950336, 81696140755536384, 3354162536029536];
n = 6: [0, 3393656235362623684608, 35701050229143616880640, 83079959422282198548480, 54913653475645427527680, 9583398717725834749440, 264444869673131894208]; ...
in which the main diagonal equals A153300.
RELATED SERIES.
S(x,r) = x + (18 + 18*r^4)*x^5/5! + (14364 + 58968*r^4 + 14364*r^8)*x^9/9! + (70203672 + 671650056*r^4 + 671650056*r^8 + 70203672*r^12)*x^13/13! + (1192064637456 + 20707300240704*r^4 + 47530354598496*r^8 + 20707300240704*r^12 + 1192064637456*r^16)*x^17/17! + (52269828456672288 + 1437626817559769760*r^4 + 5941554215913771840*r^8 + 5941554215913771840*r^12 + 1437626817559769760*r^16 + 52269828456672288*r^20)*x^21/21! + (4930307288899134335424 + 197041019249105562351744*r^4 + 1283341580573615116868160*r^8 + 2308585363008068715943680*r^12 + 1283341580573615116868160*r^16 + 197041019249105562351744*r^20 + 4930307288899134335424*r^24)*x^25/25! + ...
where D(x,r)^4 - r^4*S(x,r)^4 = 1.
C(x,r) = 1 + 6*x^4/4! + (2268 + 6048*r^4)*x^8/8! + (7434504 + 56282688*r^4 + 35126784*r^8)*x^12/12! + (95227613712 + 1409371197696*r^4 + 2514356038656*r^8 + 679185948672*r^12)*x^16/16! + (3354162536029536 + 81696140755536384*r^4 + 284770675495950336*r^8 + 220415417637617664*r^12 + 33022883487154176*r^16)*x^20/20! + (264444869673131894208 + 9583398717725834749440*r^4 + 54913653475645427527680*r^8 + 83079959422282198548480*r^12 + 35701050229143616880640*r^16 + 3393656235362623684608*r^20)*x^24/24! + ...
where D(x,r)^4 - r^4 * C(x,r)^4 = 1 - r^4.
PROG
(PARI) {T(n, k) = my(S=x, C=1, D=1); for(i=0, n,
S = intformal( C^3*D^3 +O(x^(4*n+4)));
C = 1 + intformal( S^3*D^3);
D = 1 + r^4*intformal( S^3*C^3); );
(4*n)!*polcoeff( polcoeff(D, 4*n, x), 4*k, r)}
for(n=0, 10, for(k=0, n, print1( T(n, k), ", ")); print(""))
(PARI) /* Using Series Reversion (faster) */
{T(n, k) = my(S = serreverse( intformal( 1/((1 + x^4)^3*(1 + r^4*x^4)^3 +O(x^(4*n+4)) )^(1/4) )) );
(4*n)!*polcoeff( polcoeff( (1 + r^4*S^4)^(1/4), 4*n, x), 4*k, r)}
for(n=0, 10, for(k=0, n, print1( T(n, k), ", ")); print(""))
CROSSREFS
Cf. A153300 (diagonal), A357805 (row sums), A357800 (S(x,r)), A357801 (C(x,r)).
Cf. A357542.
Sequence in context: A357801 A249698 A284452 * A109006 A114629 A060251
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Oct 14 2022
STATUS
approved