login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficients T(n,k) of x^(3*n)*r^(3*k)/(3*n)! in power series D(x,r) = 1 + r^3 * Integral S(x,r)^2 * D(x,r)^2 dx such that C(x,r)^3 - S(x,r)^3 = 1 and D(x,r)^3 - r^3*S(x,r)^3 = 1, as a triangle read by rows.
5

%I #23 Oct 14 2022 17:57:03

%S 1,0,2,0,120,40,0,21600,37440,3680,0,8553600,38966400,20592000,880000,

%T 0,6329664000,57708288000,79491456000,19269888000,435776000,0,

%U 7852204800000,123646051584000,335872728576000,213892766208000,28748332800000,386949376000,0,15132769090560000,374841224017920000,1730103155573760000,2169194182594560000,774705298498560000,64544356546560000,560034421760000

%N Coefficients T(n,k) of x^(3*n)*r^(3*k)/(3*n)! in power series D(x,r) = 1 + r^3 * Integral S(x,r)^2 * D(x,r)^2 dx such that C(x,r)^3 - S(x,r)^3 = 1 and D(x,r)^3 - r^3*S(x,r)^3 = 1, as a triangle read by rows.

%C Related to Dixon elliptic function cm(x,0) (cf. A104134).

%C Equals a row reversal of triangle A357541 which describes the related function C(x,r).

%H Paul D. Hanna, <a href="/A357542/b357542.txt">Table of n, a(n) for n = 0..2555</a>

%F Generating function D(x,r) = Sum_{n>=0} Sum_{k=0..n} T(n,k) * x^(3*n) * r^(3*k) / (3*n)! and related functions S(x,r) and C(x,r) satisfy the following relations.

%F For brevity, some formulas here will use S = S(x,r), C = C(x,r), and D = D(x,r).

%F (1.a) C(x,r)^3 - S(x,r)^3 = 1.

%F (1.b) D(x,r)^3 - r^3 * S(x,r)^3 = 1.

%F (1.c) D(x,r)^3 - r^3 * C(x,r)^3 = 1 - r^3.

%F Integral formulas.

%F (2.a) S(x,r) = Integral C(x,r)^2 * D(x,r)^2 dx.

%F (2.b) C(x,r) = 1 + Integral S(x,r)^2 * D(x,r)^2 dx.

%F (2.c) D(x,r) = 1 + r^3 * Integral S(x,r)^2 * C(x,r)^2 dx.

%F (2.d) D(x,r)^3 = 1 + r^3 * Integral 3 * S(x,r)^2 * C(x,r)^2 * D(x,r)^2 dx.

%F Derivatives.

%F (3.a) d/dx S(x,r) = C(x,r)^2 * D(x,r)^2.

%F (3.b) d/dx C(x,r) = S(x,r)^2 * D(x,r)^2.

%F (3.c) d/dx D(x,r) = r^3 * S(x,r)^2 * C(x,r)^2.

%F Exponential formulas.

%F (4.a) C - S = exp( -Integral (C + S) * D^2 dx ).

%F (4.b) D - r*S = exp( -r * Integral (D + r*S) * C^2 dx ).

%F (4.c) C + S = sqrt(C^2 - S^2) * exp( Integral D^2/(C^2 - S^2) dx ).

%F (4.d) D + r*S = sqrt(D^2 - r^2*S^2) * exp( r * Integral C^2/(D^2 - r^2*S^2) dx ).

%F (5.a) C^2 - S^2 = exp( -2 * Integral S*C/(C + S) * D^2 dx ).

%F (5.b) D^2 - r^2*S^2 = exp( -2*r^2 * Integral S*D/(D + r*S) * C^2 dx ).

%F (5.c) C^2 + S^2 = exp( 2 * Integral S*C*(C + S)/(C^2 + S^2) * D^2 dx ).

%F (5.d) D^2 + r^2*S^2 = exp( 2*r^2 * Integral S*D*(D + r*S)/(D^2 + r^2*S^2) * C^2 dx ).

%F Hyperbolic functions.

%F (6.a) C = sqrt(C^2 - S^2) * cosh( Integral D^2/(C^2 - S^2) dx ).

%F (6.b) S = sqrt(C^2 - S^2) * sinh( Integral D^2/(C^2 - S^2) dx ).

%F (6.c) D = sqrt(D^2 - r^2*S^2) * cosh( r * Integral C^2/(D^2 - r^2*S^2) dx ).

%F (6.d) r*S = sqrt(D^2 - r^2*S^2) * sinh( r * Integral C^2/(D^2 - r^2*S^2) dx ).

%F Other formulas.

%F (7) S(x,r) = Series_Reversion( Integral ( (1 + x^3)^2 * (1 + r^3*x^3)^2 )^(-1/3) dx ).

%F (8.a) T(n,n) = (-1)^n * A104134(n).

%F (8.b) Sum_{k=0..n} T(n,k) = (3*n)!/(3^n*n!) * Product_{k=1..n} (3*k - 2) = A178575(n), for n >= 0.

%e E.g.f.: D(x,r) = Sum_{n>=0} Sum_{k=0..n} T(n,k) * x^(3*n) * r^(3*k) / (3*n)! begins:

%e D(x,r) = 1 + r^3 * Integral S(x,r)^2 * C(x,r)^2 dx = 1 + 2*r^3*x^3/3! + (120*r^3 + 40*r^6)*x^6/6! + (21600*r^3 + 37440*r^6 + 3680*r^9)*x^9/9! + (8553600*r^3 + 38966400*r^6 + 20592000*r^9 + 880000*r^12)*x^12/12! + (6329664000*r^3 + 57708288000*r^6 + 79491456000*r^9 + 19269888000*r^12 + 435776000*r^15)*x^15/15! + (7852204800000*r^3 + 123646051584000*r^6 + 335872728576000*r^9 + 213892766208000*r^12 + 28748332800000*r^15 + 386949376000*r^18)*x^18/18! + (15132769090560000*r^3 + 374841224017920000*r^6 + 1730103155573760000*r^9 + 2169194182594560000*r^12 + 774705298498560000*r^15 + 64544356546560000*r^18 + 560034421760000*r^21)*x^21/21! + ...

%e This table of coefficients T(n,k) of x^(3*n) * r^(3*k) / (3*n)! in C(x,r) for n >= 0, k = 0..n, begins:

%e n = 0: [1];

%e n = 1: [0, 2];

%e n = 2: [0, 120, 40];

%e n = 3: [0, 21600, 37440, 3680];

%e n = 4: [0, 8553600, 38966400, 20592000, 880000];

%e n = 5: [0, 6329664000, 57708288000, 79491456000, 19269888000, 435776000];

%e n = 6: [0, 7852204800000, 123646051584000, 335872728576000, 213892766208000, 28748332800000, 386949376000];

%e n = 7: [0, 15132769090560000, 374841224017920000, 1730103155573760000, 2169194182594560000, 774705298498560000, 64544356546560000, 560034421760000];

%e n = 8: [0, 42815371615948800000, 1563368171330211840000, 11169319418477383680000, 23676862831649280000000, 16693947940315852800000, 3741268129758720000000, 208114576947425280000, 1233482823823360000];

%e ...

%e in which the main diagonal gives the unsigned coefficients in the Dixon elliptic function cm(x,0) (cf. A104134).

%e RELATED SERIES.

%e S(x,r) = Integral C(x,r)^2 * D(x,r)^2 dx = x + (4 + 4*r^3)*x^4/4! + (160 + 800*r^3 + 160*r^6)*x^7/7! + (20800 + 292800*r^3 + 292800*r^6 + 20800*r^9)*x^10/10! + (6476800 + 191910400*r^3 + 500121600*r^6 + 191910400*r^9 + 6476800*r^12)*x^13/13! + (3946624000 + 210590336000*r^3 + 1091343616000*r^6 + 1091343616000*r^9 + 210590336000*r^12 + 3946624000*r^15)*x^16/16! + (4161608704000 + 361556726784000*r^3 + 3216369361920000*r^6 + 6333406238720000*r^9 + 3216369361920000*r^12 + 361556726784000*r^15 + 4161608704000*r^18)*x^19/19! + (6974121256960000 + 919365914368000000*r^3 + 12789764316088320000*r^6 + 42703786876467200000*r^9 + 42703786876467200000*r^12 + 12789764316088320000*r^15 + 919365914368000000*r^18 + 6974121256960000*r^21)*x^22/22! + ...

%e where D(x,r)^3 - r^3 * S(x,r)^3 = 1.

%e C(x,r) = 1 + Integral S(x,r)^2 * D(x,r)^2 dx = 1 + 2*x^3/3! + (40 + 120*r^3)*x^6/6! + (3680 + 37440*r^3 + 21600*r^6)*x^9/9! + (880000 + 20592000*r^3 + 38966400*r^6 + 8553600*r^9)*x^12/12! + (435776000 + 19269888000*r^3 + 79491456000*r^6 + 57708288000*r^9 + 6329664000*r^12)*x^15/15! + (386949376000 + 28748332800000*r^3 + 213892766208000*r^6 + 335872728576000*r^9 + 123646051584000*r^12 + 7852204800000*r^15)*x^18/18! + (560034421760000 + 64544356546560000*r^3 + 774705298498560000*r^6 + 2169194182594560000*r^9 + 1730103155573760000*r^12 + 374841224017920000*r^15 + 15132769090560000*r^18)*x^21/21! + ...

%e where D(x,r)^3 - r^3 * C(x,r)^3 = (1 - r^3).

%o (PARI) {T(n,k) = my(S=x,C=1,D=1); for(i=0,n,

%o S = intformal( C^2*D^2 +O(x^(3*n+3)));

%o C = 1 + intformal( S^2*D^2);

%o D = 1 + r^3*intformal( S^2*C^2); );

%o (3*n)!*polcoeff( polcoeff(D,3*n,x),3*k,r)}

%o for(n=0,10, for(k=0,n, print1( T(n,k),", "));print(""))

%o (PARI) /* Using Series Reversion for S(x,r) (faster) */

%o {T(n,k) = my(S = serreverse( intformal( 1/((1 + x^3)^2*(1 + r^3*x^3)^2 +O(x^(3*n+3)) )^(1/3) )) );

%o (3*n)!*polcoeff( polcoeff((1 + r^3*S^3)^(1/3),3*n,x),3*k,r)}

%o for(n=0,10, for(k=0,n, print1( T(n,k),", "));print(""))

%Y Cf. A104134 (cm(x,0)), A357540 (S(x,r)), A357541 (C(x,r)), A178575 (row sums), A357545 (central terms).

%Y Cf. A357802.

%K nonn,tabl

%O 0,3

%A _Paul D. Hanna_, Oct 09 2022