login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052884
Number of objects generated by the Combstruct grammar defined in the Maple program. See the link for the grammar specification.
1
0, 1, 2, 6, 20, 73, 278, 1106, 4519, 18908, 80530, 348144, 1523492, 6736163, 30046395, 135041458, 610954709, 2780185203, 12716659506, 58434130086, 269618874220, 1248677115180, 5802514845319, 27046974876433, 126428233339972, 592506121687352, 2783409839422829
OFFSET
0,3
LINKS
FORMULA
G.f.: 1/(1 - x*g(x)) - 1 where g(x) is the g.f. of A052872. - Andrew Howroyd, Aug 09 2020
MAPLE
spec := [S, {B = Prod(Z, C), S=Sequence(B, 1 <= card), C=Set(S)}, unlabeled]:
seq(combstruct[count](spec, size=n), n=0..20);
PROG
(PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
seq(n)={my(v=[]); for(n=1, n, v=Vec(1/(1-x-x^2*Ser(EulerT(v))) - 1)); concat([0], v)} \\ Andrew Howroyd, Aug 09 2020
CROSSREFS
Cf. A052872.
Sequence in context: A150138 A148481 A150139 * A150140 A061396 A230823
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
Terms a(21) and beyond from Andrew Howroyd, Aug 09 2020
STATUS
approved