Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Jun 22 2021 15:13:14
%S 1,1,2,8,40,264,2048,18864,196992,2330112,30519552,440998656,
%T 6940852224,118501542912,2177222879232,42886017982464,900748014944256,
%U 20107190510714880,475167358873239552,11854636521914695680,311291779253770911744,8583598112533040332800,247944624171011289907200
%N Expansion of e.g.f. 1/(1 - arctanh(x)).
%H Alois P. Heinz, <a href="/A296676/b296676.txt">Table of n, a(n) for n = 0..430</a>
%F E.g.f.: 1/(1 + (log(1 - x) - log(1 + x))/2).
%F a(n) ~ n! * 4*exp(2) * (exp(2)+1)^(n-1) / (exp(2)-1)^(n+1). - _Vaclav Kotesovec_, Dec 18 2017
%e 1/(1 - arctanh(x)) = 1 + x/1! + 2*x^2/2! + 8*x^3/3! + 40*x^4/4! + 264*x^5/5! + ...
%p S:= series(1/(1-arctanh(x)),x,41):
%p seq(coeff(S,x,j)*j!,j=0..40); # _Robert Israel_, Dec 18 2017
%p # second Maple program:
%p a:= proc(n) option remember; `if`(n=0, 1, add(`if`(j::odd,
%p a(n-j)*binomial(n, j)*(j-1)!, 0), j=1..n))
%p end:
%p seq(a(n), n=0..25); # _Alois P. Heinz_, Jun 22 2021
%t nmax = 22; CoefficientList[Series[1/(1 - ArcTanh[x]), {x, 0, nmax}], x] Range[0, nmax]!
%t nmax = 22; CoefficientList[Series[1/(1 + (Log[1 - x] - Log[1 + x])/2), {x, 0, nmax}], x] Range[0, nmax]!
%o (PARI) x='x+O('x^99); Vec(serlaplace(1/(1+(log(1-x)-log(1+x))/2))) \\ _Altug Alkan_, Dec 18 2017
%Y Cf. A000828, A010050, A191700, A296675.
%K nonn
%O 0,3
%A _Ilya Gutkovskiy_, Dec 18 2017