Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Feb 17 2024 03:40:03
%S 1,1,3,15,97,745,6571,65359,723969,8842257,118091251,1712261551,
%T 26786070433,449634481465,8059974923547,153634497337455,
%U 3102367733191681,66145005096272929,1484586887025099619,34983117545622446287,863397428225495045601,22269844592814969946761
%N a(n) = n!*[x^n] cosh(x/(1-x))/(1-x).
%H Robert Israel, <a href="/A331325/b331325.txt">Table of n, a(n) for n = 0..443</a>
%F a(n) + A331326(n) = A002720(n).
%F a(n) - A331326(n) = A009940(n).
%F a(n) = Sum_{k=0..n/2} |A021009(n, 2*k)|.
%F a(n) = Sum_{k=0..n} binomial(n, 2*k)*n!/(2*k)!.
%F a(n) = n!*hypergeom([1/2 - n/2, -n/2], [1/2, 1/2, 1], 1/4).
%F (n+1)^2*(n+2)^2*a(n) - 4*(n+2)^3*a(n+1) + (6*n^2+30*n+37)*a(n+2) - 4*(n+3)*a(n+3)+a(n+4)=0. - _Robert Israel_, Jan 23 2020
%F Sum_{n>=0} a(n) * x^n / (n!)^2 = (1/2) * exp(x) * (BesselI(0,2*sqrt(x)) + BesselJ(0,2*sqrt(x))). - _Ilya Gutkovskiy_, Jul 18 2020
%F a(n) ~ 2^(-3/2) * exp(2*sqrt(n)-n-1/2) * n^(n+1/4) * (1 + 31/(48*sqrt(n))). - _Vaclav Kotesovec_, Feb 17 2024
%p gf := cosh(x/(1 - x))/(1 - x): ser := series(gf, x, 22):
%p seq(n!*coeff(ser, x, n), n=0..21);
%p # Alternative: seq(add(abs(A021009(n, 2*k)), k=0..n/2), n=0..21);
%p A331325 := proc(n) local S; S := proc(n, k) option remember; `if`(k = 0, 1,
%p `if`(k > n, 0, S(n-1, k-1)/k + S(n-1, k))) end: n!*add(S(n, 2*k), k=0..n) end:
%p seq(A331325(n), n=0..21);
%t a[n_] := n! HypergeometricPFQ[{1/2 - n/2, -n/2}, {1, 1/2, 1/2}, 1/4];
%t Array[a, 22, 0]
%o (PARI) x='x+O('x^22); Vec(serlaplace(cosh(x/(1-x))/(1-x)))
%o (Python)
%o def A331325():
%o sa, sb, ta, tb, n = 1, 2, 1, 0, 2
%o yield sa
%o yield ta
%o while(True):
%o s = 2*n*sb - ((n-1)**2)*sa
%o t = 2*(n-1)*tb - ((n-1)**2)*ta
%o sa, sb, ta, tb = sb, s, tb, t
%o n += 1
%o yield (s + t)//2
%o a = A331325(); print([next(a) for _ in range(22)])
%Y Cf. A002720, A009940, A021009, A331326.
%K nonn
%O 0,3
%A _Peter Luschny_, Jan 21 2020