login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of triple descents (i.e., ddd's) in all paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1),U=(1,2), or d=(1,-1).
1

%I #15 Jul 26 2017 03:16:38

%S 5,73,857,9505,103341,1114969,11996209,128989249,1387480981,

%T 14937170089,160978217225,1736820843233,18760031574077,

%U 202856430706617,2195832009812065,23792481053343361,258038743598973477

%N Number of triple descents (i.e., ddd's) in all paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1),U=(1,2), or d=(1,-1).

%H Vaclav Kotesovec, <a href="/A108444/b108444.txt">Table of n, a(n) for n = 2..100</a>

%H Emeric Deutsch, <a href="http://www.jstor.org/stable/2589192">Problem 10658: Another Type of Lattice Path</a>, American Math. Monthly, 107, 2000, 368-370.

%F a(n) = Sum_{k=1..2n-1} k*A108443(n,k). Example: a(3) = 1*24 + 2*15 + 3*3 + 4*1 = 73.

%F G.f.: zA(2A^2-2zA^2-zA-2)/(1-2zA-3zA^2), where A=1+zA^2+zA^3 or, equivalently, A=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3 (the g.f. of A027307).

%F Recurrence: n*(2*n+1)*(40*n^5 - 100*n^4 - 758*n^3 + 3649*n^2 - 5474*n + 2727)*a(n) = (880*n^7 - 2200*n^6 - 15316*n^5 + 79354*n^4 - 145332*n^3 + 125379*n^2 - 48111*n + 5220)*a(n-1) + (n-3)*(2*n - 5)*(40*n^5 + 100*n^4 - 758*n^3 + 1175*n^2 - 650*n + 84)*a(n-2). - _Vaclav Kotesovec_, Mar 18 2014

%F a(n) ~ 5^(3/4) * ((11+5*sqrt(5))/2)^n / (10*sqrt(Pi*n)). - _Vaclav Kotesovec_, Mar 18 2014

%e a(2)=5 because in the ten paths udud, udUdd, uudd, uU(ddd), Uddud, UddUdd, Ududd, UdU(ddd), Uu(ddd) and UU(d[dd)d] (see A027307) we have 5 ddd's (shown between parentheses).

%p A:=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3: G:=z*A*(-z*A-2*z*A^2-2+2*A^2)/(1-3*z*A^2-2*z*A): Gser:=series(G,z=0,26): seq(coeff(Gser,z^n),n=2..21);

%Y Cf. A027307, A108443.

%K nonn

%O 2,1

%A _Emeric Deutsch_, Jun 10 2005