login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A193378 Imaginary part of g.f. C(x) that satisfies: C(x) = 1 + x*C(I*x)^2. 2
2, -4, 2, -4, -20, 56, -126, -4, 308, -696, 5444, 7224, -7272, -14224, -191022, -450404, 39524, 2309416, 5059084, 20045736, 18158632, -170205936, -18475212, -725028200, -1746739960, 9540210896, -10852826168, 16441084912, 107790254896, -422324078368, 1055213939634 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,1

LINKS

Table of n, a(n) for n=2..32.

EXAMPLE

G.f.: C(x) = 1 + x + 2*I*x^2 + (-1 - 4*I)*x^3 + (-4 + 2*I)*x^4 + (-14 - 4*I)*x^5 + (8 - 20*I)*x^6 + (35 + 56*I)*x^7 + (44 - 126*I)*x^8 + (246 - 4*I)*x^9 + (168 + 308*I)*x^10 +...

where

C(x)^2 = 1 + 2*x + (1 + 4*I)*x^2 + (-2 - 4*I)*x^3 + (-14 - 4*I)*x^4 + (-20 - 8*I)*x^5 + (-35 - 56*I)*x^6 + (126 + 44*I)*x^7 + (246 - 4*I)*x^8 +...

The real part of the g.f. begins:

real(C(x)) = 1 + x - x^3 - 4*x^4 - 14*x^5 + 8*x^6 + 35*x^7 + 44*x^8 + 246*x^9 + 168*x^10 - 1906*x^11 + 296*x^12 +...

The imaginary part of the g.f. begins:

imag(C(x)) = 2*x^2 - 4*x^3 + 2*x^4 - 4*x^5 - 20*x^6 + 56*x^7 - 126*x^8 - 4*x^9 + 308*x^10 - 696*x^11 + 5444*x^12 +...

PROG

(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+x*subst(A, x, I*x +x*O(x^n))^2); imag(polcoeff(A, n))}

CROSSREFS

Cf. A193377 (real), A193379 (norm).

Sequence in context: A198285 A136620 A139548 * A108445 A263424 A019294

Adjacent sequences:  A193375 A193376 A193377 * A193379 A193380 A193381

KEYWORD

sign

AUTHOR

Paul D. Hanna, Jul 24 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 10 17:19 EST 2016. Contains 279005 sequences.