OFFSET
1,8
COMMENTS
For k > 1 also (1/(k-1)) times the number of n-member subsets of [k*n-1] whose elements sum to a multiple of n.
The sequence of row n satisfies a linear recurrence with constant coefficients of order n.
LINKS
Alois P. Heinz, Rows n = 1..150, flattened
FORMULA
A(n,k) = 1/(n*k) * Sum_{d|n} binomial(k*d,d)*(-1)^(n+d)*phi(n/d).
A(n,k) = (1/k) * A304482(n,k).
EXAMPLE
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
1, 4, 10, 19, 31, 46, 64, ...
0, 9, 42, 115, 244, 445, 734, ...
1, 26, 201, 776, 2126, 4751, 9276, ...
0, 76, 1028, 5601, 19780, 54086, 124872, ...
1, 246, 5538, 42288, 192130, 642342, 1753074, ...
MAPLE
with(numtheory):
A:= (n, k)-> add(binomial(k*d, d)*(-1)^(n+d)*
phi(n/d), d in divisors(n))/(n*k):
seq(seq(A(n, 1+d-n), n=1..d), d=1..12);
MATHEMATICA
A[n_, k_] := 1/(n k) Sum[Binomial[k d, d] (-1)^(n+d) EulerPhi[n/d], {d, Divisors[n]}];
Table[A[n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Oct 04 2019 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Jul 14 2019
STATUS
approved