login
A309148
A(n,k) is (1/k) times the number of n-member subsets of [k*n] whose elements sum to a multiple of n; square array A(n,k), n>=1, k>=1, read by antidiagonals.
11
1, 1, 0, 1, 1, 1, 1, 2, 4, 0, 1, 3, 10, 9, 1, 1, 4, 19, 42, 26, 0, 1, 5, 31, 115, 201, 76, 1, 1, 6, 46, 244, 776, 1028, 246, 0, 1, 7, 64, 445, 2126, 5601, 5538, 809, 1, 1, 8, 85, 734, 4751, 19780, 42288, 30666, 2704, 0, 1, 9, 109, 1127, 9276, 54086, 192130, 328755, 173593, 9226, 1
OFFSET
1,8
COMMENTS
For k > 1 also (1/(k-1)) times the number of n-member subsets of [k*n-1] whose elements sum to a multiple of n.
The sequence of row n satisfies a linear recurrence with constant coefficients of order n.
LINKS
FORMULA
A(n,k) = 1/(n*k) * Sum_{d|n} binomial(k*d,d)*(-1)^(n+d)*phi(n/d).
A(n,k) = (1/k) * A304482(n,k).
EXAMPLE
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
1, 4, 10, 19, 31, 46, 64, ...
0, 9, 42, 115, 244, 445, 734, ...
1, 26, 201, 776, 2126, 4751, 9276, ...
0, 76, 1028, 5601, 19780, 54086, 124872, ...
1, 246, 5538, 42288, 192130, 642342, 1753074, ...
MAPLE
with(numtheory):
A:= (n, k)-> add(binomial(k*d, d)*(-1)^(n+d)*
phi(n/d), d in divisors(n))/(n*k):
seq(seq(A(n, 1+d-n), n=1..d), d=1..12);
MATHEMATICA
A[n_, k_] := 1/(n k) Sum[Binomial[k d, d] (-1)^(n+d) EulerPhi[n/d], {d, Divisors[n]}];
Table[A[n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Oct 04 2019 *)
CROSSREFS
Rows n=1-3 give: A000012, A001477(k-1), A005448.
Main diagonal gives A308667.
Sequence in context: A378323 A378290 A118343 * A351761 A226031 A308460
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Jul 14 2019
STATUS
approved