

A309147


Least k such that the rank of the elliptic curve y^2 = x^3 + (k^2 + 6*k  3)*x^2  16*k*x is n.


1




OFFSET

0,2


LINKS

Table of n, a(n) for n=0..3.
Allan J. MacLeod, Knight's Problem


PROG

(PARI) {a(n) = my(k=1); while(ellanalyticrank(ellinit([0, k^2+6*k3, 0, 16*k, 0]))[1]<>n, k++); k}


CROSSREFS

Cf. A309144, A309146.
Sequence in context: A140425 A193198 A165193 * A217903 A339283 A095288
Adjacent sequences: A309144 A309145 A309146 * A309148 A309149 A309150


KEYWORD

nonn,more,hard


AUTHOR

Seiichi Manyama, Jul 14 2019


STATUS

approved



