login
Least k such that the rank of the elliptic curve y^2 = x^3 + (k^2 + 6*k - 3)*x^2 - 16*k*x is n.
2

%I #11 Jul 27 2019 11:19:58

%S 1,4,28,356

%N Least k such that the rank of the elliptic curve y^2 = x^3 + (k^2 + 6*k - 3)*x^2 - 16*k*x is n.

%H Allan J. MacLeod, <a href="http://web.archive.org/web/20100125135648/http://maths.paisley.ac.uk/allanm/ECRNT/knight/knintro.htm">Knight's Problem</a>

%o (PARI) {a(n) = my(k=1); while(ellanalyticrank(ellinit([0, k^2+6*k-3, 0, -16*k, 0]))[1]<>n, k++); k}

%Y Cf. A309144, A309146.

%K nonn,more,hard

%O 0,2

%A _Seiichi Manyama_, Jul 14 2019