The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A308667 (1/n) times the number of n-member subsets of [n^2] whose elements sum to a multiple of n. 3
 1, 1, 10, 115, 2126, 54086, 1753074, 69159399, 3220837534, 173103073384, 10551652603526, 719578430425845, 54297978110913252, 4492502634538340722, 404469190271900056316, 39370123445405248353743, 4120204305690280446004838, 461365717080848755611811094 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS Alois P. Heinz, Table of n, a(n) for n = 1..339 Romeo Meštrović, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011), arXiv:1111.3057 [math.NT], 2011. FORMULA a(n) = A309148(n,n). a(n) = (1/n) * A318477(n). a(p) == 1 (mod p^3) for all primes p >= 5 (apply Meštrović, Remark 17, p. 12). - Peter Bala, Mar 28 2023 a(n) ~ exp(n - 1/2) * n^(n - 5/2) / sqrt(2*Pi). - Vaclav Kotesovec, Mar 28 2023 MAPLE with(numtheory): a:= proc(n) option remember; add(phi(n/d)* (-1)^(n+d)*binomial(n*d, d), d=divisors(n))/n^2 end: seq(a(n), n=1..20); MATHEMATICA a[n_] := a[n] = Sum[EulerPhi[n/d]* (-1)^(n + d)*Binomial[n*d, d], {d, Divisors[n]}]/n^2; Table[a[n], {n, 1, 20}] (* Jean-François Alcover, Mar 24 2022, after Alois P. Heinz *) CROSSREFS Main diagonal of A309148. Cf. A304482, A318557, A318477. Sequence in context: A079678 A233908 A089833 * A251318 A083448 A024129 Adjacent sequences: A308664 A308665 A308666 * A308668 A308669 A308670 KEYWORD nonn AUTHOR Alois P. Heinz, Jul 14 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 14 12:23 EDT 2024. Contains 371661 sequences. (Running on oeis4.)