The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A308668 a(n) = Sum_{d|n} d^(n/d+n). 3
 1, 9, 82, 1089, 15626, 287010, 5764802, 135270401, 3487315843, 100244173394, 3138428376722, 107072686593858, 3937376385699290, 155601328490478978, 6568412173896940652, 295165920677390712833, 14063084452067724991010 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Seiichi Manyama, Table of n, a(n) for n = 1..385 FORMULA L.g.f.: -log(Product_{k>=1} (1 - k*(k*x)^k)^(1/k)) = Sum_{k>=1} a(k)*x^k/k. G.f.: Sum_{k>=1} k^(k+1) * x^k/(1 - k^(k+1) * x^k). - Seiichi Manyama, Mar 17 2021 MATHEMATICA a[n_] := DivisorSum[n, #^(n/# + n) &]; Array[a, 20] (* Amiram Eldar, Mar 17 2021 *) PROG (PARI) a(n) = sumdiv(n, d, d^(n/d+n)); (PARI) my(N=20, x='x+O('x^N)); Vec(x*deriv(-log(prod(k=1, N, (1-k*(k*x)^k)^(1/k))))) (PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, k^(k+1)*x^k/(1-k^(k+1)*x^k))) \\ Seiichi Manyama, Mar 17 2021 (Python) from sympy import divisors def A308668(n): return sum(d**(n//d+n) for d in divisors(n, generator=True)) # Chai Wah Wu, Jun 19 2022 CROSSREFS Diagonal of A308502. Cf. A152211, A294956, A308594. Sequence in context: A294956 A294645 A338663 * A308481 A041146 A320991 Adjacent sequences: A308665 A308666 A308667 * A308669 A308670 A308671 KEYWORD nonn AUTHOR Seiichi Manyama, Jun 16 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 14 07:58 EDT 2024. Contains 371655 sequences. (Running on oeis4.)