login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308668
a(n) = Sum_{d|n} d^(n/d+n).
3
1, 9, 82, 1089, 15626, 287010, 5764802, 135270401, 3487315843, 100244173394, 3138428376722, 107072686593858, 3937376385699290, 155601328490478978, 6568412173896940652, 295165920677390712833, 14063084452067724991010
OFFSET
1,2
LINKS
FORMULA
L.g.f.: -log(Product_{k>=1} (1 - k*(k*x)^k)^(1/k)) = Sum_{k>=1} a(k)*x^k/k.
G.f.: Sum_{k>=1} k^(k+1) * x^k/(1 - k^(k+1) * x^k). - Seiichi Manyama, Mar 17 2021
MATHEMATICA
a[n_] := DivisorSum[n, #^(n/# + n) &]; Array[a, 20] (* Amiram Eldar, Mar 17 2021 *)
PROG
(PARI) a(n) = sumdiv(n, d, d^(n/d+n));
(PARI) my(N=20, x='x+O('x^N)); Vec(x*deriv(-log(prod(k=1, N, (1-k*(k*x)^k)^(1/k)))))
(PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, k^(k+1)*x^k/(1-k^(k+1)*x^k))) \\ Seiichi Manyama, Mar 17 2021
(Python)
from sympy import divisors
def A308668(n): return sum(d**(n//d+n) for d in divisors(n, generator=True)) # Chai Wah Wu, Jun 19 2022
CROSSREFS
Diagonal of A308502.
Sequence in context: A294956 A294645 A338663 * A308481 A041146 A320991
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 16 2019
STATUS
approved