The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A308594 a(n) = Sum_{d|n} d^(d+n). 5
 1, 17, 730, 65601, 9765626, 2176802276, 678223072850, 281474993488897, 150094635297530563, 100000000030517582222, 81402749386839761113322, 79496847203492408399442540, 91733330193268616658399616010, 123476695691248494372093865205800 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Seiichi Manyama, Table of n, a(n) for n = 1..214 FORMULA L.g.f.: -log(Product_{k>=1} (1 - (k*x)^k)^(k^(k-1))) = Sum_{k>=1} a(k)*x^k/k. G.f.: Sum_{k>=1} (k^2 * x)^k/(1 - (k * x)^k). - Seiichi Manyama, Mar 16 2021 MATHEMATICA sp[n_]:=Module[{d=Divisors[n]}, Table[d[[k]]^(d[[k]]+n), {k, Length[ d]}]] // Total; Array[sp, 15] (* Harvey P. Dale, Jan 02 2020 *) a[n_] := DivisorSum[n, #^(# + n) &]; Array[a, 14] (* Amiram Eldar, May 11 2021 *) PROG (PARI) a(n) = sumdiv(n, d, d^(d+n)); (PARI) my(N=20, x='x+O('x^N)); Vec(x*deriv(-log(prod(k=1, N, (1-(k*x)^k)^(k^(k-1)))))) (PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, (k^2*x)^k/(1-(k*x)^k))) \\ Seiichi Manyama, Mar 16 2021 (Python) from sympy import divisors def A308594(n): return sum(d**(d+n) for d in divisors(n, generator=True)) # Chai Wah Wu, Jun 19 2022 CROSSREFS Cf. A062796, A294956, A308668. Sequence in context: A012085 A298306 A308696 * A308570 A218423 A171766 Adjacent sequences: A308591 A308592 A308593 * A308595 A308596 A308597 KEYWORD nonn AUTHOR Seiichi Manyama, Jun 09 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 14 14:31 EDT 2024. Contains 373400 sequences. (Running on oeis4.)