The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A308594 a(n) = Sum_{d|n} d^(d+n). 5
1, 17, 730, 65601, 9765626, 2176802276, 678223072850, 281474993488897, 150094635297530563, 100000000030517582222, 81402749386839761113322, 79496847203492408399442540, 91733330193268616658399616010, 123476695691248494372093865205800 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
LINKS
FORMULA
L.g.f.: -log(Product_{k>=1} (1 - (k*x)^k)^(k^(k-1))) = Sum_{k>=1} a(k)*x^k/k.
G.f.: Sum_{k>=1} (k^2 * x)^k/(1 - (k * x)^k). - Seiichi Manyama, Mar 16 2021
MATHEMATICA
sp[n_]:=Module[{d=Divisors[n]}, Table[d[[k]]^(d[[k]]+n), {k, Length[ d]}]] // Total; Array[sp, 15] (* Harvey P. Dale, Jan 02 2020 *)
a[n_] := DivisorSum[n, #^(# + n) &]; Array[a, 14] (* Amiram Eldar, May 11 2021 *)
PROG
(PARI) a(n) = sumdiv(n, d, d^(d+n));
(PARI) my(N=20, x='x+O('x^N)); Vec(x*deriv(-log(prod(k=1, N, (1-(k*x)^k)^(k^(k-1))))))
(PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, (k^2*x)^k/(1-(k*x)^k))) \\ Seiichi Manyama, Mar 16 2021
(Python)
from sympy import divisors
def A308594(n): return sum(d**(d+n) for d in divisors(n, generator=True)) # Chai Wah Wu, Jun 19 2022
CROSSREFS
Sequence in context: A012085 A298306 A308696 * A308570 A218423 A171766
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 09 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 14 14:31 EDT 2024. Contains 373400 sequences. (Running on oeis4.)