|
|
A012085
|
|
Even coefficients in expansion of cos(x)/sqrt(cos(2*x)).
|
|
3
|
|
|
1, 1, 17, 721, 58337, 7734241, 1526099057, 419784870961, 153563504618177, 72104198836466881, 42270463533824671697, 30262124466958766778001, 25981973075048213029395617, 26350476755161831091778460321
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Table of n, a(n) for n=0..13.
|
|
FORMULA
|
E.g.f.: Sum_{k>=0} a(k)x^(2k)/(2k)! = cos(x)/sqrt(cos(2*x)) = sec(arcsin(tan(x))).
a(n) ~ 2*sqrt(2/Pi) * n^(2*n) * (8/Pi)^(2*n) / exp(2*n). - Vaclav Kotesovec, Oct 07 2013
|
|
EXAMPLE
|
sec(arcsin(tan(x))) = 1+1/2!*x^2+17/4!*x^4+721/6!*x^6+58337/8!*x^8...
|
|
MATHEMATICA
|
Table[n!*SeriesCoefficient[Cos[x]/Sqrt[Cos[2*x]], {x, 0, n}], {n, 0, 30, 2}] (* Vaclav Kotesovec, Oct 07 2013 *)
|
|
PROG
|
(PARI) {a(n)=local(A); if(n<0, 0, n*=2; A=x*O(x^n); n!*polcoeff( cos(x+A)/sqrt(cos(2*x+A)), n))} /* Michael Somos, Jul 18 2005 */
|
|
CROSSREFS
|
Sequence in context: A012029 A012193 A128274 * A298306 A308696 A308594
Adjacent sequences: A012082 A012083 A012084 * A012086 A012087 A012088
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Patrick Demichel (patrick.demichel(AT)hp.com)
|
|
STATUS
|
approved
|
|
|
|