login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A012085
Even coefficients in expansion of e.g.f. cos(x)/sqrt(cos(2*x)).
3
1, 1, 17, 721, 58337, 7734241, 1526099057, 419784870961, 153563504618177, 72104198836466881, 42270463533824671697, 30262124466958766778001, 25981973075048213029395617, 26350476755161831091778460321
OFFSET
0,3
FORMULA
E.g.f.: Sum_{k>=0} a(k)x^(2k)/(2k)! = cos(x)/sqrt(cos(2*x)) = sec(arcsin(tan(x))).
a(n) ~ 2*sqrt(2/Pi) * n^(2*n) * (8/Pi)^(2*n) / exp(2*n). - Vaclav Kotesovec, Oct 07 2013
a(n) = Sum_{j=0..n} Sum_{k=0..j} (2*n+1)!*(4*k-2*j+1)^(2*n)/(n!*(n-j)!*k!*(j-k)!*(2*j+1)*(-2)^j*(-4)^n). - Tani Akinari, Oct 02 2023
EXAMPLE
sec(arcsin(tan(x))) = 1 + 1/2!*x^2 + 17/4!*x^4 + 721/6!*x^6 + 58337/8!*x^8...
MATHEMATICA
Table[n!*SeriesCoefficient[Cos[x]/Sqrt[Cos[2*x]], {x, 0, n}], {n, 0, 30, 2}] (* Vaclav Kotesovec, Oct 07 2013 *)
PROG
(PARI) {a(n)=local(A); if(n<0, 0, n*=2; A=x*O(x^n); n!*polcoeff( cos(x+A)/sqrt(cos(2*x+A)), n))} /* Michael Somos, Jul 18 2005 */
(PARI) {a(n)=sum(j=0, n, sum(k=0, j, (2*n+1)!*(4*k-2*j+1)^(2*n)/(n!*(n-j)!*k!*(j-k)!*(2*j+1)*(-2)^j*(-4)^n)))}; /* Tani Akinari, Oct 02 2023 */
CROSSREFS
Sequence in context: A012029 A012193 A128274 * A298306 A308696 A308594
KEYWORD
nonn
AUTHOR
Patrick Demichel (patrick.demichel(AT)hp.com)
STATUS
approved