login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152211
a(n) = n * sigma_0(n) + sigma_1(n).
5
2, 7, 10, 19, 16, 36, 22, 47, 40, 58, 34, 100, 40, 80, 84, 111, 52, 147, 58, 162, 116, 124, 70, 252, 106, 146, 148, 224, 88, 312, 94, 255, 180, 190, 188, 415, 112, 212, 212, 410, 124, 432, 130, 348, 348, 256, 142, 604
OFFSET
1,1
COMMENTS
a(n) is the sum of all parts plus the total number of parts of all partitions of n into equal parts. - Omar E. Pol, Nov 30 2019
LINKS
FORMULA
a(n) = n * A000005(n) + A000203(n).
a(n) = A038040(n) + A000203(n). - Torlach Rush, Feb 01 2019
G.f.: Sum_{k>=1} (k + 1) * x^k/(1 - x^k)^2. - Ilya Gutkovskiy, Aug 14 2019
EXAMPLE
For n = 4 the partitions of 4 into equal parts are [4], [2,2], [1,1,1,1]. The sum of all parts is 4 + 2 + 2 + 1 + 1 + 1 + 1 = 12. There are 7 parts, so a(4) = 12 + 7 = 19. - Omar E. Pol, Nov 30 2019
MATHEMATICA
Array[Total[{#, 1} DivisorSigma[{0, 1}, #]] &, 48] (* Michael De Vlieger, Dec 01 2019 *)
PROG
(PARI) a(n) = n*numdiv(n) + sigma(n) \\ Michel Marcus, Jun 02 2013
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Ctibor O. Zizka, Nov 29 2008
STATUS
approved