Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Jun 19 2022 15:23:00
%S 1,9,82,1089,15626,287010,5764802,135270401,3487315843,100244173394,
%T 3138428376722,107072686593858,3937376385699290,155601328490478978,
%U 6568412173896940652,295165920677390712833,14063084452067724991010
%N a(n) = Sum_{d|n} d^(n/d+n).
%H Seiichi Manyama, <a href="/A308668/b308668.txt">Table of n, a(n) for n = 1..385</a>
%F L.g.f.: -log(Product_{k>=1} (1 - k*(k*x)^k)^(1/k)) = Sum_{k>=1} a(k)*x^k/k.
%F G.f.: Sum_{k>=1} k^(k+1) * x^k/(1 - k^(k+1) * x^k). - _Seiichi Manyama_, Mar 17 2021
%t a[n_] := DivisorSum[n, #^(n/# + n) &]; Array[a, 20] (* _Amiram Eldar_, Mar 17 2021 *)
%o (PARI) a(n) = sumdiv(n,d,d^(n/d+n));
%o (PARI) my(N=20, x='x+O('x^N)); Vec(x*deriv(-log(prod(k=1, N, (1-k*(k*x)^k)^(1/k)))))
%o (PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, k^(k+1)*x^k/(1-k^(k+1)*x^k))) \\ _Seiichi Manyama_, Mar 17 2021
%o (Python)
%o from sympy import divisors
%o def A308668(n): return sum(d**(n//d+n) for d in divisors(n,generator=True)) # _Chai Wah Wu_, Jun 19 2022
%Y Diagonal of A308502.
%Y Cf. A152211, A294956, A308594.
%K nonn
%O 1,2
%A _Seiichi Manyama_, Jun 16 2019