The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A233908 10*binomial(7*n+10,n)/(7*n+10). 6
 1, 10, 115, 1450, 19425, 271502, 3915100, 57821940, 870238200, 13298907050, 205811513765, 3218995093860, 50802419972395, 808016193159000, 12938696992921000, 208419656266988904, 3374960506795660365, 54907659530154222000, 897060906625956765000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p=7, r=10. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669. Thomas A. Dowling, Catalan Numbers Chapter 7 Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955. Wikipedia, Fuss-Catalan number FORMULA 72*n*(6*n+5)*(3*n+5)*(2*n+3)*(3*n+4)*(6*n+7)*a(n) -7*(7*n+4)*(7*n+8)*(7*n+5)*(7*n+9)*(7*n+6)*(7*n+3)*a(n-1)=0. - R. J. Mathar, Dec 22 2013 G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=7, r=10. MATHEMATICA Table[10 Binomial[7 n + 10, n]/(7 n + 10), {n, 0, 40}] (* Vincenzo Librandi, Dec 23 2013 *) PROG (PARI) a(n) = 10*binomial(7*n+10, n)/(7*n+10); (PARI) {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(7/10))^10+x*O(x^n)); polcoeff(B, n)} (Magma) [10*Binomial(7*n+10, n)/(7*n+10): n in [0..30]]; // Vincenzo Librandi, Dec 23 2013 CROSSREFS Cf. A000108, A002296, A233832 - A233835, A143547, A130565, A233907. Sequence in context: A104520 A138845 A079678 * A089833 A308667 A251318 Adjacent sequences: A233905 A233906 A233907 * A233909 A233910 A233911 KEYWORD nonn AUTHOR Tim Fulford, Dec 17 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 22 06:48 EDT 2024. Contains 372743 sequences. (Running on oeis4.)