

A233906


Primes of the form (3^k mod k^3) + 1, in order of increasing k.


1



2, 1499, 1783, 9719, 9311, 67883, 134947, 203317, 189433, 560171, 438533, 943849, 640973, 578827, 2172383, 28687, 1505657, 7595033, 2822971, 1242379, 22899523, 9232219, 5730031, 12336083, 3487607, 35451433, 12174803, 10234079, 84459019, 68736683, 44671169, 85507057
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS



EXAMPLE

1499 is in the sequence because (3^13 mod 13^3) + 1 = 1499 which is prime.
9719 is in the sequence because (3^29 mod 29^3) + 1 = 9719 which is prime.


MAPLE

KD := proc() local a; a:=3^n mod n^3 + 1; if isprime(a) then RETURN (a); fi; end: seq(KD(), n=1..1000);


CROSSREFS

Cf. A007519 (primes congruent to 1 mod 8).


KEYWORD

nonn


AUTHOR



STATUS

approved



