login
A130565
Member k=6 of a family of generalized Catalan numbers.
10
1, 6, 57, 650, 8184, 109668, 1533939, 22137570, 327203085, 4928006512, 75357373305, 1166880131820, 18259838103852, 288308609783760, 4587430875645660, 73484989079268690, 1184104656043939071
OFFSET
1,2
COMMENTS
The generalized Catalan numbers C(k,n):= binomial(k*n+1,n)/(k*n+1) become for negative k=-|k|, with |k|>=2, ((-1)^(n-1))*binomial((|k|+1)*n-2,n)/(|k|*n-1), n>=0.
For the members of the family C(k,n), k=2..9, see A130564.
The family c(k,n):=binomial((k+1)*n-2,n)/(k*n-1), n>=1, has the members A006013, A006632, A118971,for k=2,3,4 respectively (but the offset there is 0) and A130564 for k=5.
LINKS
Elżbieta Liszewska, Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.
FORMULA
a(n) = binomial((k+1)*n-2,n)/(k*n-1), with k=6.
G.f.: inverse series of y*(1-y)^6.
a(n) = (6/7)*binomial(7*n,n)/(7*n-1). [Bruno Berselli, Jan 17 2014]
From Wolfdieter Lang, Feb 06 2020: (Start)
G.f.: (6/7)*(1 - hypergeom([-1, 1, 2, 3, 4, 5]/7, [1, 2, 3, 4, 5]/6, (7^7/6^6)*x)).
E.g.f.: (6/7)*(1 - hypergeom([-1, 1, 2, 3, 4, 5]/7, [1, 2, 3, 4, 5, 6]/6, (7^7/6^6)*x)). (End)
MATHEMATICA
Table[Binomial[7n-2, n]/(6n-1), {n, 20}] (* Harvey P. Dale, Feb 25 2013 *)
CROSSREFS
Cf. k=5 member A130564. A006013, A006632, A118971,
Sequence in context: A213105 A138414 A349363 * A124556 A369514 A365816
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jul 13 2007
STATUS
approved