OFFSET
1,2
COMMENTS
The generalized Catalan numbers C(k,n):= binomial(k*n+1,n)/(k*n+1) become for negative k=-|k|, with |k|>=2, ((-1)^(n-1))*binomial((|k|+1)*n-2,n)/(|k|*n-1), n>=0.
For the members of the family C(k,n), k=2..9, see A130564.
LINKS
Harvey P. Dale, Table of n, a(n) for n = 1..806
Elżbieta Liszewska, Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.
FORMULA
a(n) = binomial((k+1)*n-2,n)/(k*n-1), with k=6.
G.f.: inverse series of y*(1-y)^6.
a(n) = (6/7)*binomial(7*n,n)/(7*n-1). [Bruno Berselli, Jan 17 2014]
From Wolfdieter Lang, Feb 06 2020: (Start)
G.f.: (6/7)*(1 - hypergeom([-1, 1, 2, 3, 4, 5]/7, [1, 2, 3, 4, 5]/6, (7^7/6^6)*x)).
E.g.f.: (6/7)*(1 - hypergeom([-1, 1, 2, 3, 4, 5]/7, [1, 2, 3, 4, 5, 6]/6, (7^7/6^6)*x)). (End)
MATHEMATICA
Table[Binomial[7n-2, n]/(6n-1), {n, 20}] (* Harvey P. Dale, Feb 25 2013 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jul 13 2007
STATUS
approved