login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A365816
G.f. A(x) satisfies: A(x) = x * (1 + A(x))^3 / (1 - 3 * A(x)).
7
0, 1, 6, 57, 658, 8442, 115692, 1658505, 24565530, 372999198, 5774883348, 90821581578, 1446901409268, 23301338376916, 378711707274072, 6203898306232233, 102329366764727658, 1698047225583890550, 28327664136201303300, 474821679792884860590, 7992739387298462213340
OFFSET
0,3
COMMENTS
Reversion of g.f. for hexagonal numbers (with signs).
LINKS
Eric Weisstein's World of Mathematics, Hexagonal Number
Eric Weisstein's World of Mathematics, Series Reversion
FORMULA
a(n) = (1/n) * Sum_{k=0..n-1} binomial(n+k-1,k) * binomial(3*n,n-k-1) * 3^k for n > 0.
a(n) ~ 6^(3*n + 1/2) / (sqrt((481 + 133*sqrt(13))*Pi) * n^(3/2) * (13*sqrt(13) - 35)^n). - Vaclav Kotesovec, Sep 26 2023
MATHEMATICA
nmax = 20; A[_] = 0; Do[A[x_] = x (1 + A[x])^3/(1 - 3 A[x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
CoefficientList[InverseSeries[Series[x (1 - 3 x)/(1 + x)^3, {x, 0, 20}], x], x]
Join[{0}, Table[1/n Sum[Binomial[n + k - 1, k] Binomial[3 n, n - k - 1] 3^k, {k, 0, n - 1}], {n, 1, 20}]]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Sep 25 2023
STATUS
approved