login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213105
G.f. satisfies: A(x) = 1 + x/A(-x*A(x)^12)^6.
16
1, 1, 6, 57, 614, 7716, 104322, 1529385, 23689968, 385885521, 6531397090, 114147452526, 2045979734964, 37435147640010, 696431496524796, 13134442980269397, 250527556214516892, 4824098879117797749, 93639919777995946446, 1830133457257882605430
OFFSET
0,3
COMMENTS
Compare definition of g.f. to:
(1) B(x) = 1 + x/B(-x*B(x)) when B(x) = 1/(1-x).
(2) C(x) = 1 + x/C(-x*C(x)^3)^2 when C(x) = 1 + x*C(x)^2 (A000108).
(3) D(x) = 1 + x/D(-x*D(x)^5)^3 when D(x) = 1 + x*D(x)^3 (A001764).
(4) E(x) = 1 + x/E(-x*E(x)^7)^4 when E(x) = 1 + x*E(x)^4 (A002293).
(5) F(x) = 1 + x/F(-x*F(x)^9)^5 when F(x) = 1 + x*F(x)^5 (A002294).
(6) G(x) = 1 + x/G(-x*G(x)^11)^6 when G(x) = 1 + x*G(x)^6 (A002295).
EXAMPLE
G.f.: A(x) = 1 + x + 6*x^2 + 57*x^3 + 614*x^4 + 7716*x^5 + 104322*x^6 +...
Related expansions:
A(x)^12 = 1 + 12*x + 138*x^2 + 1696*x^3 + 21723*x^4 + 292836*x^5 +...
A(-x*A(x)^12)^6 = 1 - 6*x - 21*x^2 - 146*x^3 - 1959*x^4 - 25056*x^5 -...
MATHEMATICA
m = 20; A[_] = 1; Do[A[x_] = 1 + x/A[-x A[x]^12]^6 + O[x]^m, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Nov 06 2019 *)
PROG
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1+x/subst(A^6, x, -x*subst(A^12, x, x+x*O(x^n))) ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 05 2012
STATUS
approved