login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A309188
(1/9) times the number of n-member subsets of [9n] whose elements sum to a multiple of n.
2
1, 8, 109, 1640, 27151, 478232, 8782075, 166237160, 3220837534, 63562714008, 1273237637706, 25820645555000, 529080420540114, 10937268134114568, 227824992158991334, 4777204094770874856, 100757627271124231383, 2136117417345649876112, 45496022230420668679932
OFFSET
1,2
COMMENTS
Also (1/8) times the number of n-member subsets of [9n-1] whose elements sum to a multiple of n.
LINKS
FORMULA
a(n) = 1/(9n) * Sum_{d|n} binomial(9d,d)*(-1)^(n+d)*phi(n/d).
MAPLE
with(numtheory):
a:= n-> add(binomial(9*d, d)*(-1)^(n+d)*
phi(n/d), d in divisors(n))/(9*n):
seq(a(n), n=1..25);
PROG
(PARI) a(n) = 1/(9*n) * sumdiv(n, d, binomial(9*d, d)*(-1)^(n+d)*eulerphi(n/d)); \\ Michel Marcus, Jul 19 2019
CROSSREFS
Column k=9 of A309148.
Sequence in context: A095917 A259233 A322718 * A371385 A380045 A098623
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 15 2019
STATUS
approved