OFFSET
0,3
REFERENCES
G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..200
G. Labelle, Counting enriched multigraphs according to the number of their edges (or arcs), Discrete Math., 217 (2000), 237-248.
G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004. [Cached copy, with permission]
FORMULA
E.g.f.: B(R(x)) where B(x) is the e.g.f. of A014505 and 1 + R(x) is the e.g.f. of A000110. - Andrew Howroyd, Jan 12 2021
PROG
(PARI) \\ here R(n) is A000110 as e.g.f.
egfA020556(n)={my(bell=serlaplace(exp(exp(x + O(x^(2*n+1)))-1))); sum(i=0, n, sum(k=0, i, (-1)^k*binomial(i, k)*polcoef(bell, 2*i-k))*x^i/i!) + O(x*x^n)}
EnrichedGdSeq(R)={my(n=serprec(R, x)-1, B=subst(egfA020556(n), x, log(1+x + O(x*x^n)))); Vec(serlaplace(subst(B, x, R-polcoef(R, 0))))}
R(n)={exp(exp(x + O(x*x^n))-1)}
EnrichedGdSeq(R(20)) \\ Andrew Howroyd, Jan 12 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Oct 26 2004
EXTENSIONS
Terms a(12) and beyond from Andrew Howroyd, Jan 12 2021
STATUS
approved