|
|
A118346
|
|
Central terms of pendular triangle A118345.
|
|
6
|
|
|
1, 1, 5, 30, 201, 1445, 10900, 85128, 682505, 5585115, 46461437, 391743850, 3340361700, 28755475180, 249572076200, 2181469638880, 19186562661273, 169677521094215, 1507881643936015, 13458730170115778, 120599648894147185
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Also, g.f. A(x) = (1/x)*series_reversion of x/(1 + x*GF(A005572)), where GF(A005572) is the g.f. of A005572, which is the number of walks on cubic lattice starting and finishing on the xy plane and never going below it.
|
|
LINKS
|
Seiichi Manyama, Table of n, a(n) for n = 0..1000
|
|
FORMULA
|
G.f.: A=A(x) satisfies A = 1 - 2*x*A + 2*x*A^2 + x*A^3.
G.f.: A(x) = 1 + series_reversion[x/((1+x)*(1+4*x+x^2))].
G.f.: A(x) = (1/x)*series_reversion[ x*(1-2*x+sqrt((1-2*x)*(1-6*x)))/2/(1-2*x) ].
For n>0: a(n) = (1/n)*sum(binomial(n,j)*sum(binomial(j,i)*binomial(n-j,2*j-n-i-1)*5^(2*n-3*j+2*i+1),i=0..n-1), j=0..n). [Vladimir Kruchinin, Dec 26 2010]
|
|
PROG
|
(PARI) {a(n)=polcoeff(serreverse(x*(1-2*x+sqrt((1-2*x)*(1-6*x)+x*O(x^n)))/2/(1-2*x))/x, n)}
|
|
CROSSREFS
|
Cf. A118345, A118347, A118348, A118349.
Sequence in context: A196678 A128328 A245376 * A234422 A091927 A253076
Adjacent sequences: A118343 A118344 A118345 * A118347 A118348 A118349
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Paul D. Hanna, Apr 26 2006
|
|
STATUS
|
approved
|
|
|
|