login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132046
Triangle read by rows: T(n,0) = T(n,n) = 1, and T(n,k) = 2*binomial(n,k) for 1 <= k <= n - 1.
10
1, 1, 1, 1, 4, 1, 1, 6, 6, 1, 1, 8, 12, 8, 1, 1, 10, 20, 20, 10, 1, 1, 12, 30, 40, 30, 12, 1, 1, 14, 42, 70, 70, 42, 14, 1, 1, 16, 56, 112, 140, 112, 56, 16, 1, 1, 18, 72, 168, 252, 252, 168, 72, 18, 1, 1, 20, 90, 240, 420, 504, 420, 240, 90, 20, 1
OFFSET
0,5
COMMENTS
T(2*n,n) is A100320 (with Hankel transform A144704). - Paul Barry, Sep 19 2008
Double the internal elements of Pascal's triangle. - Paul Barry, Jan 07 2009
Coefficients of 2*(x + 1)^n - (x^n + 1) as a triangle (except for the very first term). - Thomas Baruchel, Jun 02 2018
FORMULA
T(n,k) = 2*A007318(n,k) - A103451(n,k).
T(n,k) = [k<=n] (0^(n + k) + C(n,k)*(2 - 0^(n - k) - 0^k)). - Paul Barry, Sep 19 2008
T(n,k) = A007318(n,k)*A154325(n,k). - Paul Barry, Jan 07 2009
From Emanuele Munarini, May 15 2018: (Start)
G.f.: (1 - t - x*t + 3*x*t^2 - x*t^3 - x^2*t^3)/((1 - t)*(1 - x*t)*(1 - t - x*t)).
T(n+3,k+2) = 2*T(n+2,k+2) - T(n+1,k+2) + 2*T(n+2,k+1) - 3*T(n+1,k+1) - T(n+1,k) + T(n,k+1) + T(n,k), except for n = 0 and k = 0. (End)
E.g.f.: 1 - exp(t) - exp(t*x) + 2*exp(t*(1 + x)). - Franck Maminirina Ramaharo, Jan 02 2019
EXAMPLE
First few rows of the triangle are:
1;
1, 1;
1, 4, 1;
1, 6, 6, 1;
1, 8, 12, 8, 1;
1, 10, 20, 20, 10, 1;
1, 12, 30, 40, 30, 12, 1;
1, 14, 42, 70, 70, 42, 14, 1;
...
MATHEMATICA
T[n_, k_] := If[n == k || k == 0, 1, If[k <= n, 2 Binomial[n, k], 0]]
Flatten[Table[T[n, k], {n, 0, 20}, {k, 0, n}]] (* Emanuele Munarini, May 15 2018 *)
PROG
(Maxima) T(n, k) := if k = 0 or k = n then 1 else 2*binomial(n, k)$
create_list(T(n, k), n, 0, 20, k, 0, n); /* Franck Maminirina Ramaharo, Jan 03 2019 */
CROSSREFS
Row sums: A095121.
Cf. A154327 (diagonal sums). [Paul Barry, Jan 07 2009]
Cf. A141540.
Sequence in context: A140262 A049702 A159040 * A141540 A143188 A102413
KEYWORD
nonn,easy,tabl
AUTHOR
Gary W. Adamson, Aug 08 2007
STATUS
approved