login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A132046 Triangle read by rows: T(n,0) = T(n,n) = 1, and T(n,k) = 2*binomial(n,k) for 1 <= k <= n - 1. 10
1, 1, 1, 1, 4, 1, 1, 6, 6, 1, 1, 8, 12, 8, 1, 1, 10, 20, 20, 10, 1, 1, 12, 30, 40, 30, 12, 1, 1, 14, 42, 70, 70, 42, 14, 1, 1, 16, 56, 112, 140, 112, 56, 16, 1, 1, 18, 72, 168, 252, 252, 168, 72, 18, 1, 1, 20, 90, 240, 420, 504, 420, 240, 90, 20, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
T(2*n,n) is A100320 (with Hankel transform A144704). - Paul Barry, Sep 19 2008
Double the internal elements of Pascal's triangle. - Paul Barry, Jan 07 2009
Coefficients of 2*(x + 1)^n - (x^n + 1) as a triangle (except for the very first term). - Thomas Baruchel, Jun 02 2018
LINKS
FORMULA
T(n,k) = 2*A007318(n,k) - A103451(n,k).
T(n,k) = [k<=n] (0^(n + k) + C(n,k)*(2 - 0^(n - k) - 0^k)). - Paul Barry, Sep 19 2008
T(n,k) = A007318(n,k)*A154325(n,k). - Paul Barry, Jan 07 2009
From Emanuele Munarini, May 15 2018: (Start)
G.f.: (1 - t - x*t + 3*x*t^2 - x*t^3 - x^2*t^3)/((1 - t)*(1 - x*t)*(1 - t - x*t)).
T(n+3,k+2) = 2*T(n+2,k+2) - T(n+1,k+2) + 2*T(n+2,k+1) - 3*T(n+1,k+1) - T(n+1,k) + T(n,k+1) + T(n,k), except for n = 0 and k = 0. (End)
E.g.f.: 1 - exp(t) - exp(t*x) + 2*exp(t*(1 + x)). - Franck Maminirina Ramaharo, Jan 02 2019
EXAMPLE
First few rows of the triangle are:
1;
1, 1;
1, 4, 1;
1, 6, 6, 1;
1, 8, 12, 8, 1;
1, 10, 20, 20, 10, 1;
1, 12, 30, 40, 30, 12, 1;
1, 14, 42, 70, 70, 42, 14, 1;
...
MATHEMATICA
T[n_, k_] := If[n == k || k == 0, 1, If[k <= n, 2 Binomial[n, k], 0]]
Flatten[Table[T[n, k], {n, 0, 20}, {k, 0, n}]] (* Emanuele Munarini, May 15 2018 *)
PROG
(Maxima) T(n, k) := if k = 0 or k = n then 1 else 2*binomial(n, k)$
create_list(T(n, k), n, 0, 20, k, 0, n); /* Franck Maminirina Ramaharo, Jan 03 2019 */
CROSSREFS
Row sums: A095121.
Cf. A154327 (diagonal sums). [Paul Barry, Jan 07 2009]
Cf. A141540.
Sequence in context: A140262 A049702 A159040 * A141540 A143188 A102413
KEYWORD
nonn,easy,tabl
AUTHOR
Gary W. Adamson, Aug 08 2007
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 19:25 EST 2023. Contains 367593 sequences. (Running on oeis4.)