login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154325
Triangle with interior all 2's and borders 1.
7
1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1
OFFSET
0,5
COMMENTS
This triangle follows a general construction method as follows: Let a(n) be an integer sequence with a(0)=1, a(1)=1. Then T(n,k,r):=[k<=n](1+r*a(k)*a(n-k)) defines a symmetrical triangle.
Row sums are n + 1 + r*Sum_{k=0..n} a(k)*a(n-k) and central coefficients are 1+r*a(n)^2.
Here a(n)=1-0^n and r=1. Row sums are A004277.
Eigensequence of the triangle = A000129, the Pell sequence. - Gary W. Adamson, Feb 12 2009
Inverse has general element T(n,k)*(-1)^(n-k). - Paul Barry, Oct 06 2010
FORMULA
Number triangle T(n,k) = [k<=n](2-0^(n-k)-0^k+0^(n+k))=[k<=n](2-0^(k(n-k))).
a(n) = 2 - A103451(n). - Omar E. Pol, Jan 18 2009
EXAMPLE
Triangle begins
1;
1, 1;
1, 2, 1;
1, 2, 2, 1;
1, 2, 2, 2, 1;
1, 2, 2, 2, 2, 1;
1, 2, 2, 2, 2, 2, 1;
From Paul Barry, Oct 06 2010: (Start)
Production matrix is
1, 1;
0, 1, 1;
0, -1, 0, 1;
0, 1, 0, 0, 1;
0, -1, 0, 0, 0, 1;
0, 1, 0, 0, 0, 0, 1;
0, -1, 0, 0, 0, 0, 0, 1;
0, 1, 0, 0, 0, 0, 0, 0, 1; (End)
CROSSREFS
Cf. A129765. - R. J. Mathar, Jan 14 2009
Cf. A103451. - Omar E. Pol, Jan 18 2009
Cf. A000129. - Gary W. Adamson, Feb 12 2009
Sequence in context: A134034 A174886 A157415 * A129765 A143187 A348042
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Jan 07 2009
STATUS
approved