login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A154324 Diagonal sums of number triangle A113582. 1
1, 1, 2, 3, 6, 12, 23, 43, 74, 124, 195, 300, 441, 637, 890, 1226, 1647, 2187, 2848, 3673, 4664, 5874, 7305, 9021, 11024, 13390, 16121, 19306, 22947, 27147, 31908, 37348, 43469, 50405, 58158, 66879, 76570, 87400, 99371, 112671, 127302, 143472, 161183, 180664 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (3,0,-8,6,6,-8,0,3,-1).

FORMULA

G.f.: (1 -2*x -x^2 +5*x^3 -x^4 -2*x^5 +x^6)/((1-x)*(1-x^2))^3.

a(n) = Sum_{k=0..floor(n/2)} ( 1 + C(k+1,2)*C(n-2k+1,2) ).

From Colin Barker, Sep 12 2016: (Start)

a(n) = (2895 + 945*(-1)^n + (1786-90*(-1)^n)*n - 30*(3+(-1)^n)*n^2 + 40*n^3 + 30*n^4 + 4*n^5)/3840.

a(n) = (2*n^5+15*n^4+20*n^3-60*n^2+848*n+1920)/1920 for n even.

a(n) = (2*n^5+15*n^4+20*n^3-30*n^2+938*n+975)/1920 for n odd. (End)

MATHEMATICA

LinearRecurrence[{3, 0, -8, 6, 6, -8, 0, 3, -1}, {1, 1, 2, 3, 6, 12, 23, 43, 74}, 25] (* G. C. Greubel, Sep 11 2016 *)

CoefficientList[Series[(1 - 2 x - x^2 + 5 x^3 - x^4 - 2 x^5 + x^6) / ((1 - x) (1 - x^2))^3, {x, 0, 50}], x] (* Vincenzo Librandi, Sep 12 2016 *)

PROG

(PARI) Vec((1-2*x-x^2+5*x^3-x^4-2*x^5+x^6) / ((1-x)^6*(1+x)^3) + O(x^60)) \\ Colin Barker, Sep 12 2016

CROSSREFS

Sequence in context: A068012 A261930 A019138 * A001630 A164363 A103341

Adjacent sequences:  A154321 A154322 A154323 * A154325 A154326 A154327

KEYWORD

nonn,easy

AUTHOR

Paul Barry, Jan 07 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 5 05:27 EST 2016. Contains 278761 sequences.