login
A154327
Diagonal sums of number triangle A132046.
2
1, 1, 2, 5, 8, 15, 24, 41, 66, 109, 176, 287, 464, 753, 1218, 1973, 3192, 5167, 8360, 13529, 21890, 35421, 57312, 92735, 150048, 242785, 392834, 635621, 1028456, 1664079, 2692536, 4356617, 7049154, 11405773, 18454928, 29860703, 48315632, 78176337, 126491970, 204668309, 331160280, 535828591, 866988872
OFFSET
0,3
FORMULA
G.f.: (1 - x^2 + 2x^3 + x^4)/( (1-x^2)*(1-x-x^2) ).
a(n) = 0^n - (3 + (-1)^n)/2 + 2*Fibonacci(n+1).
MATHEMATICA
Join[{1}, LinearRecurrence[{1, 2, -1, -1}, {1, 2, 5, 8}, 25]] (* G. C. Greubel, Sep 11 2016 *)
CoefficientList[Series[(1 - x^2 + 2 x^3 + x^4) / ((1 - x^2) (1 - x - x^2)), {x, 0, 50}], x] (* Vincenzo Librandi, Sep 12 2016 *)
PROG
(Magma) [0^n-(3+(-1)^n)/2+2*Fibonacci(n+1):n in [0..40]]; // Vincenzo Librandi, Sep 12 2016
CROSSREFS
A shifted version of A066629.
Sequence in context: A066897 A078697 A066629 * A074027 A018156 A051293
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jan 07 2009
STATUS
approved