The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A041025 Denominators of continued fraction convergents to sqrt(17). 27
 1, 8, 65, 528, 4289, 34840, 283009, 2298912, 18674305, 151693352, 1232221121, 10009462320, 81307919681, 660472819768, 5365090477825, 43581196642368, 354014663616769, 2875698505576520, 23359602708228929, 189752520171407952, 1541379764079492545 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(2*n+1) with b(2*n+1) := A041024(2*n+1), n >= 0, give all (positive integer) solutions to Pell equation b^2 - 17*a^2 = +1, a(2*n) with b(2*n) := A041024(2*n), n >= 0, give all (positive integer) solutions to Pell equation b^2 - 17*a^2 = -1 (cf. Emerson reference). Bisection: a(2*n) = T(2*n+1,sqrt(17))/sqrt(17) = A078988(n), n >= 0 and a(2*n+1) = 8*S(n-1,66), n >= 0, with T(n,x), resp. S(n,x), Chebyshev's polynomials of the first, resp. second kind. S(-1,x)=0. See A053120, resp. A049310. - Wolfdieter Lang, Jan 10 2003 Sqrt(17) = 8/2 + 8/65 + 8/(65*4289) + 8/(4289*283009) + ... . - Gary W. Adamson, Dec 26 2007 For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 8's along the main diagonal and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011 De Moivre's formula: a(n) = (r^n - s^n)/(r-s), for r > s, gives sequences with integers if r and s are conjugates. With r=4+sqrt(17) and s=4-sqrt(17), a(n+1)/a(n) converges to r=4+sqrt(17). - Sture Sjöstedt, Nov 11 2011 a(n) equals the number of words of length n on alphabet {0,1,...,8} avoiding runs of zeros of odd lengths. - Milan Janjic, Jan 28 2015 From Michael A. Allen, Feb 21 2023: (Start) Also called the 8-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence. a(n) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 8 kinds of squares available. (End) LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17. D. Birmajer, J. B. Gil, and M. D. Weiner, On the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3, Example 8. E. I. Emerson, Recurrent Sequences in the Equation DQ^2=R^2+N, Fib. Quart., 7 (1969), pp. 231-242, Thm. 1, p. 233. Sergio Falcón and Ángel Plaza, The k-Fibonacci sequence and the Pascal 2-triangle, Chaos, Solitons & Fractals 2007; 33(1): 38-49. S. Falcón and Á. Plaza, On k-Fibonacci sequences and polynomials and their derivatives, Chaos, Solitons & Fractals (2007). Milan Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7. Tanya Khovanova, Recursive Sequences Kai Wang, On k-Fibonacci Sequences And Infinite Series List of Results and Examples, 2020. Index entries for sequences related to Chebyshev polynomials. Index entries for linear recurrences with constant coefficients, signature (8,1). FORMULA G.f.: 1/(1 - 8*x - x^2). a(n) = ((-i)^n)*S(n, 8*i), with S(n, x) := U(n, x/2) Chebyshev's polynomials of the second kind and i^2 = -1. See A049310. a(n) = F(n, 8), the n-th Fibonacci polynomial evaluated at x=8. - T. D. Noe, Jan 19 2006 From Sergio Falcon, Sep 24 2007: (Start) a(n) = ((4 + sqrt(17))^n - (4 - sqrt(17))^n)/(2*sqrt(17)); a(n) = Sum_{i=0..floor((n-1)/2)} binomial(n-1-i,i)*8^(n-1-2i). (End) Let T be the 2 X 2 matrix [0, 1; 1, 8]. Then T^n * [1, 0] = [a(n-2), a(n-1)]. - Gary W. Adamson, Dec 26 2007 a(n) = 8*a(n-1) + a(n-2), n > 1; a(0)=1, a(1)=8. - Philippe Deléham, Nov 20 2008 a(p) == ((p-1)/2)) (mod p) for odd primes p. - Gary W. Adamson, Feb 22 2009 Sum_{n>=0} (-1)^n/(a(n)*a(n+1)) = sqrt(17) - 4. - Vladimir Shevelev, Feb 23 2013 G.f.: x/(1 - 8*x - x^2) = Sum_{n >= 0} x^n *( Product_{k = 1..n} (m*k + 8 - m + x)/(1 + m*k*x) ) for arbitrary m (a telescoping series). - Peter Bala, May 08 2024 MATHEMATICA CoefficientList[Series[1/(-z^2 - 8 z + 1), {z, 0, 200}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 23 2011 *) Denominator[Convergents[Sqrt[17], 30]] (* Harvey P. Dale, Aug 15 2011 *) LinearRecurrence[{8, 1}, {1, 8}, 50] (* Sture Sjöstedt, Nov 11 2011 *) PROG (Sage) [lucas_number1(n, 8, -1) for n in range(1, 20)] # Zerinvary Lajos, Apr 25 2009 (Magma) I:=[1, 8]; [n le 2 select I[n] else 8*Self(n-1)+Self(n-2): n in [1..25]]; // Vincenzo Librandi, Feb 23 2013 (PARI) Vec(1/(1-8*x-x^2)+O(x^99)) \\ Charles R Greathouse IV, Dec 09 2014 CROSSREFS Cf. A041024, A040012. Cf. A000045, A000129, A006190, A001076, A052918, A005668, A054413, A243399. Row n=8 of A073133, A172236 and A352361. Cf. A099369 (squares). Sequence in context: A033118 A033126 A022039 * A163459 A081190 A189431 Adjacent sequences: A041022 A041023 A041024 * A041026 A041027 A041028 KEYWORD nonn,cofr,easy AUTHOR N. J. A. Sloane STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 13 09:43 EDT 2024. Contains 373383 sequences. (Running on oeis4.)