login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081190
8th binomial transform of (1,0,1,0,1,.....), A059841.
6
1, 8, 65, 536, 4481, 37928, 324545, 2803256, 24405761, 213887048, 1884629825, 16679193176, 148135411841, 1319377419368, 11777507763905, 105319346802296, 943126559710721, 8454906106826888, 75861524447454785, 681125306429182616
OFFSET
0,2
COMMENTS
Binomial transform of A081189.
a(n) is also the number of words of length n over an alphabet of nine letters, of which a chosen one appears an even number of times. See a comment in A007582, also for the crossrefs. for the 1- to 11- letter word cases. For a formulation in terms of maps see a Geoffrey Critzer comment in A081189. - Wolfdieter Lang, Jul 17 2017
FORMULA
a(n) = 16*a(n-1) -63*a(n-2), a(0)=1, a(1)=8.
G.f.: (1-8*x)/((1-7*x)*(1-9*x)).
E.g.f. exp(8*x) * cosh(x).
a(n) = 7^n/2 + 9^n/2.
MATHEMATICA
CoefficientList[Series[(1 - 8 x) / ((1 - 7 x) (1 - 9 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Aug 07 2013 *)
LinearRecurrence[{16, -63}, {1, 8}, 20] (* Harvey P. Dale, Apr 04 2017 *)
PROG
(Magma) [7^n/2 + 9^n/2: n in [0..25]]; // Vincenzo Librandi, Aug 07 2013
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 11 2003
STATUS
approved