login
A022039
Define the generalized Pisot sequence T(a(0),a(1)) by: a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n). This is T(8,65).
1
8, 65, 528, 4288, 34823, 282798, 2296605, 18650749, 151462893, 1230031456, 9989096027, 81121534697, 658788680558, 5350028537458, 43447627739097, 352838558325161, 2865404964997647, 23269978350457597, 188975694202166613, 1534673236964508227
OFFSET
0,1
COMMENTS
This coincides with the Pisot T(8,65) sequence as defined in A008776 at least up to n <= 14000. - R. J. Mathar, Feb 13 2016
FORMULA
Empirical g.f.: -(x^6+x^5+x^4+x^3-x-8) / (x^7+x^6+x^5+x^4-x^2-8*x+1). - Colin Barker, Dec 02 2014
MATHEMATICA
RecurrenceTable[{a[1] == 8, a[2] == 65, a[n] == Ceiling[a[n-1]^2/a[n-2]] - 1}, a, {n, 30}] (* Bruno Berselli, Feb 17 2016 *)
PROG
(PARI)
T(a0, a1, maxn) = a=vector(maxn); a[1]=a0; a[2]=a1; for(n=3, maxn, a[n]=floor(a[n-1]^2/a[n-2])); a
T(8, 65, 100) \\ Colin Barker, Dec 02 2014
(Magma) Tiv:=[8, 65]; [n le 2 select Tiv[n] else Ceiling(Self(n-1)^2/Self(n-2))-1: n in [1..30]]; // Bruno Berselli, Feb 17 2016
CROSSREFS
Sequence in context: A288788 A033118 A033126 * A041025 A163459 A081190
KEYWORD
nonn
AUTHOR
STATUS
approved