login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081192
10th binomial transform of (1,0,1,0,1,......), A059841.
6
1, 10, 101, 1030, 10601, 110050, 1151501, 12135070, 128702801, 1372684090, 14712104501, 158346365110, 1710428956601, 18532288986130, 201313313019101, 2191569650755150, 23901375026212001, 261062105099480170
OFFSET
0,2
COMMENTS
Binomial transform of A060531.
Average of binomial and inverse binomial transforms of 10^n.
a(n) is also the number of words of length n over an alphabet of eleven letters with a chosen letter appearing an even number of times. See a comment in A007582, also for the crossrefs. for the 1- to 10- letter word cases. - Wolfdieter Lang, Jul 17 2017
FORMULA
a(n) = 20*a(n-1) -99*a(n-2), a(0)=1, a(1)=10.
G.f.: (1-10*x)/((1-9*x)*(1-11*x)).
E.g.f.: exp(10*x) * cosh(x).
a(n) = 9^n/2 + 11^n/2.
a(n) = Sum_{k=0..floor(n/2)} C(n,2*k)*10^(n-2*k).
MAPLE
A081192:=n->9^n/2 + 11^n/2: seq(A081192(n), n=0..30); # Wesley Ivan Hurt, May 03 2017
MATHEMATICA
CoefficientList[Series[(1-10x)/((1-9x)(1-11x)), {x, 0, 200}], x] (* Vincenzo Librandi, Aug 07 2013 *)
PROG
(Magma) [9^n/2 + 11^n/2: n in [0..25]]; // Vincenzo Librandi, Aug 07 2013
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 11 2003
STATUS
approved