login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

10th binomial transform of (1,0,1,0,1,......), A059841.
6

%I #26 Sep 08 2022 08:45:09

%S 1,10,101,1030,10601,110050,1151501,12135070,128702801,1372684090,

%T 14712104501,158346365110,1710428956601,18532288986130,

%U 201313313019101,2191569650755150,23901375026212001,261062105099480170

%N 10th binomial transform of (1,0,1,0,1,......), A059841.

%C Binomial transform of A060531.

%C Average of binomial and inverse binomial transforms of 10^n.

%C a(n) is also the number of words of length n over an alphabet of eleven letters with a chosen letter appearing an even number of times. See a comment in A007582, also for the crossrefs. for the 1- to 10- letter word cases. - _Wolfdieter Lang_, Jul 17 2017

%H Vincenzo Librandi, <a href="/A081192/b081192.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (20,-99).

%F a(n) = 20*a(n-1) -99*a(n-2), a(0)=1, a(1)=10.

%F G.f.: (1-10*x)/((1-9*x)*(1-11*x)).

%F E.g.f.: exp(10*x) * cosh(x).

%F a(n) = 9^n/2 + 11^n/2.

%F a(n) = Sum_{k=0..floor(n/2)} C(n,2*k)*10^(n-2*k).

%p A081192:=n->9^n/2 + 11^n/2: seq(A081192(n), n=0..30); # _Wesley Ivan Hurt_, May 03 2017

%t CoefficientList[Series[(1-10x)/((1-9x)(1-11x)),{x,0,200}],x] (* _Vincenzo Librandi_, Aug 07 2013 *)

%o (Magma) [9^n/2 + 11^n/2: n in [0..25]]; // _Vincenzo Librandi_, Aug 07 2013

%Y Cf. A007582, A059841, A060531.

%K easy,nonn

%O 0,2

%A _Paul Barry_, Mar 11 2003