login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163461
a(n) = 18*a(n-1) - 79*a(n-2) for n > 1; a(0) = 1, a(1) = 10.
3
1, 10, 101, 1028, 10525, 108238, 1116809, 11551760, 119703769, 1242078802, 12900820685, 134090546972, 1394465011381, 14507216994070, 150967169994161, 1571338917363368, 16357694083001905, 170302719022328218
OFFSET
0,2
COMMENTS
Binomial transform of A163460. Inverse binomial transform of A163462.
FORMULA
a(n) = ((2+sqrt(2))*(9+sqrt(2))^n + (2-sqrt(2))*(9-sqrt(2))^n)/4.
G.f.: (1-8*x)/(1-18*x+79*x^2).
E.g.f.: (1/2)*exp(9*x)*(2*cosh(sqrt(2)*x) + sqrt(2)*sinh(sqrt(2)*x)). - G. C. Greubel, Dec 24 2016
MATHEMATICA
LinearRecurrence[{18, -79}, {1, 10}, 30] (* Harvey P. Dale, Jul 25 2013 *)
PROG
(Magma) [ n le 2 select 9*n-8 else 18*Self(n-1)-79*Self(n-2): n in [1..18] ];
(PARI) Vec((1-8*x)/(1-18*x+79*x^2) + O(x^50)) \\ G. C. Greubel, Dec 24 2016
CROSSREFS
Sequence in context: A261199 A041041 A333344 * A081192 A288809 A288895
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, Jul 28 2009
STATUS
approved