login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163458
a(n) = 12*a(n-1) - 34*a(n-2) for n > 1; a(0) = 1, a(1) = 7.
2
1, 7, 50, 362, 2644, 19420, 143144, 1057448, 7822480, 57916528, 429034016, 3179246240, 23563798336, 174671207872, 1294885351040, 9599803144832, 71171535802624, 527665122707200, 3912149255197184, 29005176890321408
OFFSET
0,2
COMMENTS
Binomial transform of A161734. Inverse binomial transform of A163459.
FORMULA
a(n) = ((2+sqrt(2))*(6+sqrt(2))^n + (2-sqrt(2))*(6-sqrt(2))^n)/4.
G.f.: (1-5*x)/(1-12*x+34*x^2).
E.g.f.: (1/2)*exp(6*x)*(sqrt(2)*sinh(sqrt(2)*x) + 2*cosh(sqrt(2)*x)). - G. C. Greubel, Dec 24 2016
MATHEMATICA
LinearRecurrence[{12, -34}, {1, 7}, 40] (* Harvey P. Dale, Aug 25 2015 *)
PROG
(Magma) [ n le 2 select 6*n-5 else 12*Self(n-1)-34*Self(n-2): n in [1..20] ];
(PARI) Vec((1-5*x)/(1-12*x+34*x^2) + O(x^50)) \\ G. C. Greubel, Dec 24 2016
CROSSREFS
Sequence in context: A033125 A022037 A054413 * A081571 A275827 A081189
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, Jul 28 2009
STATUS
approved