login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163460
a(n) = 16*a(n-1) - 62*a(n-2) for n > 1; a(0) = 1, a(1) = 9.
3
1, 9, 82, 754, 6980, 64932, 606152, 5672648, 53180944, 499190928, 4689836320, 44087543584, 414630845504, 3900665825856, 36703540792448, 345415371476096, 3251026414485760, 30600669600254208, 288047075905950208
OFFSET
0,2
COMMENTS
Binomial transform of A163459. Inverse binomial transform of A163461.
FORMULA
a(n) = ((2+sqrt(2))*(8+sqrt(2))^n + (2-sqrt(2))*(8-sqrt(2))^n)/4.
G.f.: (1-7*x)/(1-16*x+62*x^2).
E.g.f.: (1/2)*exp(8*x)*(2*cosh(sqrt(2)*x) + sqrt(2)*sinh(sqrt(2)*x)). - G. C. Greubel, Dec 24 2016
MATHEMATICA
LinearRecurrence[{16, -62}, {1, 9}, 30] (* Harvey P. Dale, Jul 13 2014 *)
PROG
(Magma) [ n le 2 select 8*n-7 else 16*Self(n-1)-62*Self(n-2): n in [1..19] ];
(PARI) Vec((1-7*x)/(1-16*x+62*x^2) + O(x^50)) \\ G. C. Greubel, Dec 24 2016
CROSSREFS
Sequence in context: A099371 A334611 A068109 * A081191 A060531 A248848
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, Jul 28 2009
STATUS
approved