login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 16*a(n-1) - 62*a(n-2) for n > 1; a(0) = 1, a(1) = 9.
3

%I #10 Sep 08 2022 08:45:46

%S 1,9,82,754,6980,64932,606152,5672648,53180944,499190928,4689836320,

%T 44087543584,414630845504,3900665825856,36703540792448,

%U 345415371476096,3251026414485760,30600669600254208,288047075905950208

%N a(n) = 16*a(n-1) - 62*a(n-2) for n > 1; a(0) = 1, a(1) = 9.

%C Binomial transform of A163459. Inverse binomial transform of A163461.

%H G. C. Greubel, <a href="/A163460/b163460.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (16, -62).

%F a(n) = ((2+sqrt(2))*(8+sqrt(2))^n + (2-sqrt(2))*(8-sqrt(2))^n)/4.

%F G.f.: (1-7*x)/(1-16*x+62*x^2).

%F E.g.f.: (1/2)*exp(8*x)*(2*cosh(sqrt(2)*x) + sqrt(2)*sinh(sqrt(2)*x)). - _G. C. Greubel_, Dec 24 2016

%t LinearRecurrence[{16,-62},{1,9},30] (* _Harvey P. Dale_, Jul 13 2014 *)

%o (Magma) [ n le 2 select 8*n-7 else 16*Self(n-1)-62*Self(n-2): n in [1..19] ];

%o (PARI) Vec((1-7*x)/(1-16*x+62*x^2) + O(x^50)) \\ _G. C. Greubel_, Dec 24 2016

%Y Cf. A163459, A163461.

%K nonn

%O 0,2

%A _Klaus Brockhaus_, Jul 28 2009