login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248848
Norm of coefficients in the expansion of 1/(1 - 3*x - I*x^2), where I^2=-1.
0
1, 9, 82, 765, 7129, 66420, 618841, 5765805, 53720578, 500519961, 4663394209, 43449307200, 404821512289, 3771762252921, 35141883671458, 327420421852365, 3050608602778201, 28422823459498740, 264818270254044889, 2467338136208552925, 22988434568917776562, 214185529001504000169
OFFSET
0,2
COMMENTS
Working with an offset of 1, this sequence is a divisibility sequence, i.e., a(n) divides a(m) whenever n divides m. It is the case P1 = 9, P2 = -4, Q = 1 of the 3 parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - Peter Bala, Dec 02 2014
LINKS
H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277.
H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences Integers, Volume 12A (2012) The John Selfridge Memorial Volume
FORMULA
G.f.: (1-x^2)/(1 - 9*x - 2*x^2 - 9*x^3 + x^4).
a(n) = 9*a(n-1) + 2*a(n-2) + 9*a(n-3) - a(n-4). - Vaclav Kotesovec, Nov 09 2014
a(n) ~ (1 + 9/sqrt(97) + 3*sqrt((18+2*sqrt(97))/97)) * (9 + sqrt(97) + 3*sqrt(18+2*sqrt(97)))^n / 4^(n+1). - Vaclav Kotesovec, Nov 09 2014
From Peter Bala, Dec 02 2014: (Start)
The following remarks assume an offset of 1:
a(n) = ( T(n,a) - T(n,b) )/(a - b), where T(n,x) denotes the Chebyshev polynomial of the first kind and where a = ( 9 + sqrt(97) )/4 and b = ( 9 - sqrt(97) )/4 denote the roots of the quadratic equation x^2 - 9/2*x - 1 = 0.
a(n) = the bottom left entry of the 2 X 2 matrix 2*T(n,1/2*M), where M is the 2 X 2 matrix [0, 4; 1, 9]. See A100047. (End)
EXAMPLE
G.f.: A(x) = 1 + 9*x + 82*x^2 + 765*x^3 + 7129*x^4 + 66420*x^5 +...
If we expand the complex series:
1/(1 - 3*x + I*x^2) = 1 + 3*x + (9 - I)*x^2 + (27 - 6*I)*x^3 + (80 - 27*I)*x^4 + (234 - 108*I)*x^5 + (675 - 404*I)*x^6 + (1917 - 1446*I)*x^7 + (5347 - 5013*I)*x^8 + (14595 - 16956*I)*x^9 +...
then the terms of this sequence equals the norm of the above coefficients:
a(0) = 1^2 = 1;
a(1) = 3^2 = 9;
a(2) = 9^2 + (-1)^2 = 82;
a(3) = 27^2 + (-6)^2 = 765;
a(4) = 80^2 + (-27)^2 = 7129;
a(5) = 234^2 + (-108)^2 = 66420; ...
MATHEMATICA
Abs[CoefficientList[Series[1/(1 - 3*x - I*x^2), {x, 0, 20}], x]]^2 (* Vaclav Kotesovec, Nov 09 2014 *)
PROG
(PARI) {a(n)=(polcoeff(1/(1-3*x+I*x^2 +x*O(x^n)), n))}
for(n=0, 31, print1(norm(a(n)), ", "))
(Magma) I:=[1, 9, 82, 765]; [n le 4 select I[n] else 9*Self(n-1)+2*Self(n-2)+9*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Mar 22 2015
CROSSREFS
Cf. A100047.
Sequence in context: A163460 A081191 A060531 * A045741 A283498 A294956
KEYWORD
nonn,easy
AUTHOR
Paul D. Hanna, Nov 02 2014
STATUS
approved