login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A283498
a(n) = Sum_{d|n} d^(d+1).
9
1, 9, 82, 1033, 15626, 280026, 5764802, 134218761, 3486784483, 100000015634, 3138428376722, 106993205660122, 3937376385699290, 155568095563577034, 6568408355712906332, 295147905179487044617, 14063084452067724991010, 708235345355341163422059, 37589973457545958193355602
OFFSET
1,2
LINKS
FORMULA
From Ilya Gutkovskiy, May 06 2017: (Start)
G.f.: Sum_{k>=1} k^(k+1)*x^k/(1 - x^k).
L.g.f.: -log(Product_{k>=1} (1 - x^k)^(k^k)) = Sum_{n>=1} a(n)*x^n/n. (End)
EXAMPLE
a(6) = 1^2 + 2^3 + 3^4 + 6^7 = 280026.
MATHEMATICA
f[n_] := Block[{d = Divisors[n]}, Total[d^(d + 1)]]; Array[f, 19] (* Robert G. Wilson v, Mar 10 2017 *)
PROG
(PARI) a(n) = sumdiv(n, d, d^(d+1)); \\ Michel Marcus, Mar 09 2017
(Python)
from sympy import divisors
def A283498(n): return sum(d**(d+1) for d in divisors(n, generator=True)) # Chai Wah Wu, Jun 19 2022
CROSSREFS
Cf. A007778, A062796 (Sum_{d|n} d^d).
Sequence in context: A060531 A248848 A045741 * A294956 A294645 A338663
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 09 2017
EXTENSIONS
More terms from Michel Marcus, Mar 09 2017
STATUS
approved