%I #25 Jun 19 2022 13:45:06
%S 1,9,82,1033,15626,280026,5764802,134218761,3486784483,100000015634,
%T 3138428376722,106993205660122,3937376385699290,155568095563577034,
%U 6568408355712906332,295147905179487044617,14063084452067724991010,708235345355341163422059,37589973457545958193355602
%N a(n) = Sum_{d|n} d^(d+1).
%H Seiichi Manyama, <a href="/A283498/b283498.txt">Table of n, a(n) for n = 1..385</a>
%F From _Ilya Gutkovskiy_, May 06 2017: (Start)
%F G.f.: Sum_{k>=1} k^(k+1)*x^k/(1 - x^k).
%F L.g.f.: -log(Product_{k>=1} (1 - x^k)^(k^k)) = Sum_{n>=1} a(n)*x^n/n. (End)
%e a(6) = 1^2 + 2^3 + 3^4 + 6^7 = 280026.
%t f[n_] := Block[{d = Divisors[n]}, Total[d^(d + 1)]]; Array[f, 19] (* _Robert G. Wilson v_, Mar 10 2017 *)
%o (PARI) a(n) = sumdiv(n, d, d^(d+1)); \\ _Michel Marcus_, Mar 09 2017
%o (Python)
%o from sympy import divisors
%o def A283498(n): return sum(d**(d+1) for d in divisors(n,generator=True)) # _Chai Wah Wu_, Jun 19 2022
%Y Cf. A007778, A062796 (Sum_{d|n} d^d).
%K nonn
%O 1,2
%A _Seiichi Manyama_, Mar 09 2017
%E More terms from _Michel Marcus_, Mar 09 2017