login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{d|n} d^(d+1).
9

%I #25 Jun 19 2022 13:45:06

%S 1,9,82,1033,15626,280026,5764802,134218761,3486784483,100000015634,

%T 3138428376722,106993205660122,3937376385699290,155568095563577034,

%U 6568408355712906332,295147905179487044617,14063084452067724991010,708235345355341163422059,37589973457545958193355602

%N a(n) = Sum_{d|n} d^(d+1).

%H Seiichi Manyama, <a href="/A283498/b283498.txt">Table of n, a(n) for n = 1..385</a>

%F From _Ilya Gutkovskiy_, May 06 2017: (Start)

%F G.f.: Sum_{k>=1} k^(k+1)*x^k/(1 - x^k).

%F L.g.f.: -log(Product_{k>=1} (1 - x^k)^(k^k)) = Sum_{n>=1} a(n)*x^n/n. (End)

%e a(6) = 1^2 + 2^3 + 3^4 + 6^7 = 280026.

%t f[n_] := Block[{d = Divisors[n]}, Total[d^(d + 1)]]; Array[f, 19] (* _Robert G. Wilson v_, Mar 10 2017 *)

%o (PARI) a(n) = sumdiv(n, d, d^(d+1)); \\ _Michel Marcus_, Mar 09 2017

%o (Python)

%o from sympy import divisors

%o def A283498(n): return sum(d**(d+1) for d in divisors(n,generator=True)) # _Chai Wah Wu_, Jun 19 2022

%Y Cf. A007778, A062796 (Sum_{d|n} d^d).

%K nonn

%O 1,2

%A _Seiichi Manyama_, Mar 09 2017

%E More terms from _Michel Marcus_, Mar 09 2017