login
A163459
a(n) = 14*a(n-1) - 47*a(n-2) for n > 1; a(0) = 1, a(1) = 8.
3
1, 8, 65, 534, 4421, 36796, 307357, 2573586, 21584425, 181223408, 1522659737, 12799736142, 107631298349, 905250578212, 7614837072565, 64060941839946, 538955843348689, 4534517540404184, 38152320928270193, 321010168596786054
OFFSET
0,2
COMMENTS
Binomial transform of A163458. Inverse binomial transform of A163460.
FORMULA
a(n) = ((2+sqrt(2))*(7+sqrt(2))^n + (2-sqrt(2))*(7-sqrt(2))^n)/4.
G.f.: (1-6*x)/(1-14*x+47*x^2).
E.g.f.: (1/2)*exp(7*x)*(sqrt(2)*sinh(sqrt(2)*x) + 2*cosh(sqrt(2)*x)). - G. C. Greubel, Dec 24 2016
MATHEMATICA
LinearRecurrence[{14, -47}, {1, 8}, 50] (* G. C. Greubel, Dec 24 2016 *)
PROG
(Magma) [ n le 2 select 7*n-6 else 14*Self(n-1)-47*Self(n-2): n in [1..20] ];
(PARI) Vec((1-6*x)/(1-14*x+47*x^2) + O(x^50)) \\ G. C. Greubel, Dec 24 2016
CROSSREFS
Sequence in context: A033126 A022039 A041025 * A081190 A189431 A024105
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, Jul 28 2009
STATUS
approved