Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Sep 08 2022 08:45:46
%S 1,10,101,1028,10525,108238,1116809,11551760,119703769,1242078802,
%T 12900820685,134090546972,1394465011381,14507216994070,
%U 150967169994161,1571338917363368,16357694083001905,170302719022328218
%N a(n) = 18*a(n-1) - 79*a(n-2) for n > 1; a(0) = 1, a(1) = 10.
%C Binomial transform of A163460. Inverse binomial transform of A163462.
%H G. C. Greubel, <a href="/A163461/b163461.txt">Table of n, a(n) for n = 0..975</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (18, -79).
%F a(n) = ((2+sqrt(2))*(9+sqrt(2))^n + (2-sqrt(2))*(9-sqrt(2))^n)/4.
%F G.f.: (1-8*x)/(1-18*x+79*x^2).
%F E.g.f.: (1/2)*exp(9*x)*(2*cosh(sqrt(2)*x) + sqrt(2)*sinh(sqrt(2)*x)). - _G. C. Greubel_, Dec 24 2016
%t LinearRecurrence[{18,-79},{1,10},30] (* _Harvey P. Dale_, Jul 25 2013 *)
%o (Magma) [ n le 2 select 9*n-8 else 18*Self(n-1)-79*Self(n-2): n in [1..18] ];
%o (PARI) Vec((1-8*x)/(1-18*x+79*x^2) + O(x^50)) \\ _G. C. Greubel_, Dec 24 2016
%Y Cf. A163460, A163462.
%K nonn
%O 0,2
%A _Klaus Brockhaus_, Jul 28 2009