login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A045940
Numbers m such that the factorizations of m..m+3 have the same number of primes (including multiplicities).
19
602, 603, 1083, 2012, 2091, 2522, 2523, 2524, 2634, 2763, 3243, 3355, 4023, 4202, 4203, 4921, 4922, 4923, 5034, 5035, 5132, 5203, 5282, 5283, 5785, 5882, 5954, 5972, 6092, 6212, 6476, 6962, 6985, 7314, 7730, 7731, 7945, 8393, 8825, 8956, 8972, 9162
OFFSET
1,1
LINKS
Zak Seidov and Michael De Vlieger, Table of n, a(n) for n = 1..11998 (First 3356 terms from Zak Seidov)
MATHEMATICA
f[n_]:=Plus@@Last/@FactorInteger[n]; lst={}; lst={}; Do[If[f[n]==f[n+1]==f[n+2]==f[n+3], AppendTo[lst, n]], {n, 0, 8!}]; lst (* Vladimir Joseph Stephan Orlovsky, May 12 2010 *)
SequencePosition[PrimeOmega[Range[10000]], {x_, x_, x_, x_}][[All, 1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 02 2020 *)
PROG
(PARI) isok(n) = (bigomega(n) == bigomega(n+1)) && (bigomega(n+1) == bigomega(n+2)) && (bigomega(n+2) == bigomega(n+3)); \\ Michel Marcus, Jan 06 2015
CROSSREFS
Numbers m through m+k have the same number of prime divisors (with multiplicity): A045920 (k=1), A045939 (k=2), this sequence (k=3), A045941 (k=4), A045942 (k=5), A123103 (k=6), A123201 (k=7), A358017 (k=8), A358018 (k=9), A358019 (k=10).
Cf. A045932 (similar, with omega).
Sequence in context: A292069 A107440 A218055 * A124057 A252435 A363830
KEYWORD
nonn
STATUS
approved